Added Resistance by means of time-domain models in seakeeping

Aad J. Hermans,
Email: A.J.Hermans@ewi.TUDelft.nl,
Department Applied Mathematical Analysis,
Faculty of Electrical Engineering, Mathematics and Computer Science,
Delft University of Technology,
The Netherlands.

Non-linear formulation

Potential theory

$$\Delta \Phi = 0$$

Free-surface condition (no surface tension) on $z = \zeta(x, y)$

$$g\frac{\partial\Phi}{\partial z} + \frac{\partial^2\Phi}{\partial t^2} + \nabla\Phi \cdot \nabla\frac{\partial\Phi}{\partial t} + \left(\frac{\partial\Phi}{\partial x}\frac{\partial}{\partial x_{\zeta}} + \frac{\partial\Phi}{\partial y}\frac{\partial}{\partial y_{\zeta}}\right) \left(\frac{\partial\Phi}{\partial t} + \frac{1}{2}\nabla\Phi \cdot \nabla\Phi\right) = 0$$

where

$$\frac{\partial F(x, y, \zeta(x, y))}{\partial x_{\zeta}} = \frac{\partial F}{\partial x} + \frac{\partial F}{\partial z} \frac{\partial \zeta}{\partial x}$$

is differentiation along the free-surface.

Non-linear formulation

At the exact hull H(t) we have

$$\frac{\partial \Phi}{\partial n} = \frac{\partial \alpha}{\partial t} \cdot \mathbf{n},$$

where α is the displacement in the mean ship-fixed coordinate system.

Radiation condition.

Decomposition of the potential

We decompose the potential function in a steady and unsteady part

$$\Phi(\mathbf{x},t) = \Phi_{s}(\mathbf{x}) + \phi_{u}(\mathbf{x},t).$$

Choices for the steady part are

- $\Phi_s(\mathbf{x}) = Ux$ the unperturbed flow
- $\Phi_s(\mathbf{x}) = \Phi_r(\mathbf{x})$ double body flow
- $\bullet \ \Phi_{\scriptscriptstyle S}(\mathbf{x}) = \Phi_{\scriptscriptstyle \Gamma}(\mathbf{x}) + \phi(\mathbf{x})$
- Solution of the nonlinear steady problem (RAPID)

The steady potential

The non-linear free surface conditions for the steady potential are

$$\frac{\partial \Phi_s}{\partial x} \frac{\partial \zeta_s}{\partial x} + \frac{\partial \Phi_s}{\partial y} \frac{\partial \zeta_s}{\partial y} - \frac{\partial \Phi_s}{\partial z} = 0 \quad \text{on } z = \zeta_s,$$

 ζ_s is the steady free-surface elevation that satisfies

$$\zeta_s = -\frac{1}{2g} \left(\nabla \Phi_s \cdot \nabla \Phi_s - U^2 \right).$$

with $\Phi_s(\mathbf{x}) = \Phi_r(\mathbf{x}) + \phi(\mathbf{x})$ and $z' = z - \zeta_r$ the free surface condition becomes

$$\phi_{z} + \frac{1}{g} \left[\Phi_{rx}^{2} \phi_{xx} + 2 \Phi_{rx} \Phi_{ry} \phi_{xy} + \Phi_{ry}^{2} \phi_{yy} + (3 \Phi_{rx} \Phi_{rxx} + 2 \Phi_{ry} \Phi_{rxy} + \Phi_{rx} \Phi_{rzz}) \phi_{x} + (3 \Phi_{ry} \Phi_{ryy} + 2 \Phi_{rx} \Phi_{rxy} + \Phi_{ry} \Phi_{rxx}) \phi_{y} \right] = D(x, y) \text{ at } z = 0,$$

The steady potential

with

$$D(x,y) = \frac{\partial}{\partial x} [\zeta_r(x,y) \Phi_{rx}(x,y,0)] + \frac{\partial}{\partial y} [\zeta_r(x,y) \Phi_{ry}(x,y,0)]$$

and

$$\zeta_r = \frac{1}{2g} \left[U^2 - \Phi_{rx}^2(x, y, 0) - \Phi_{ry}^2(x, y, 0) \right].$$

The condition advocated by Dawson is

$$\left(\Phi_{rl}^2\phi_l\right)_l + g\phi_z = 2\Phi_{rl}^2\Phi_{rll},$$

where *I* is a curvilinear coordinate along the streamlines of the double body flow.

RAPID (Raven)

Source distribution

$$\Phi_{s}(\mathbf{x}) = \Phi_{\infty}(\mathbf{x}) + \int \int_{\partial D} \sigma(\boldsymbol{\xi}) G(\boldsymbol{\xi}; \mathbf{x}) \, dS_{\xi},$$

where for deep water the Green's function is chosen as

$$G(\boldsymbol{\xi}; \mathbf{x}) = -\frac{1}{4\pi r} \qquad r = |\mathbf{x} - \boldsymbol{\xi}|.$$

The integration may be chosen along the ship hull and the actual free surface or raised panels.

Several sources of errors such as

- choice of difference schemes
- position of raised panels $y_{fs} = \alpha \Delta x$
- ullet upstream shift of coolocation points $\gamma \Delta x$

$$\bullet$$
 \times \times \times

RAPID (Raven)

Dispersion ??

Introduce (notation: Sclavounos and Nakos)

$$s:=rac{k\Delta x}{2\pi}$$
 $F_{n\Delta}:=rac{U_{\infty}}{\sqrt{g\Delta x}}$.

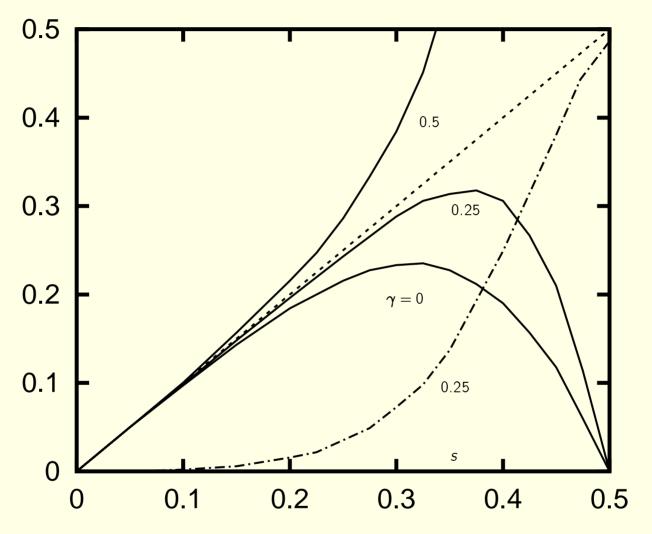
The continuous dispersion expression

$$\widetilde{\mathcal{W}}_{\nu}=k_0-k=k_0(1-2\pi F n_{\Delta}^2 s).$$

The dispersion relation for the discrete operator becomes

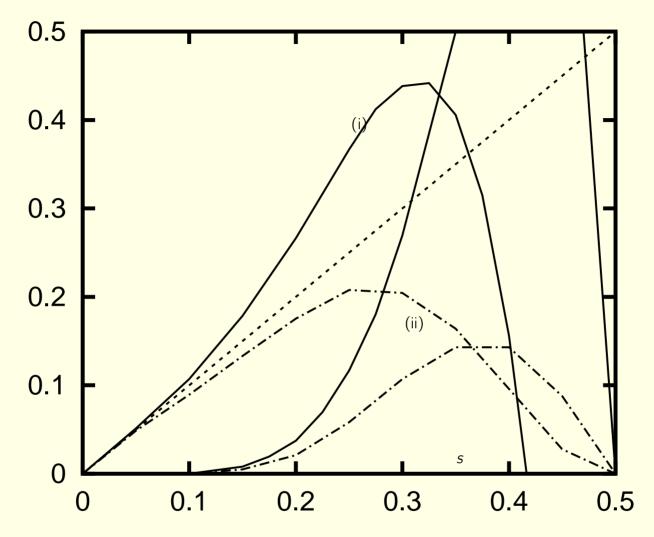
$$\widehat{\mathcal{W}}_{\nu} = k_0 (1 - 2\pi F n_{\Delta}^2 L h(s)).$$

Deviation in the dispersion



 $\Re Lh(s)$ for $\alpha=0.5$ and $\gamma=0.5$, 0.25, 0 and $\Im Lh(s)$ for $\gamma=0.25$.

Deviation in the dispersion



 \Re and $\Im Lh(s)$ (i) for $\alpha=1$, $\gamma=0.25$ and Dawson (ii).

Unsteady potential

We linearise along the steady free surface $z=\zeta_s$

$$\begin{split} \frac{\partial^2 \phi_u}{\partial t^2} + 2\nabla \Phi_s \cdot \nabla \frac{\partial \phi_u}{\partial t} + \nabla \Phi_s \cdot \nabla \left(\nabla \Phi_s \cdot \nabla \phi_u \right) + \\ \frac{1}{2} \left(\frac{\partial \phi_u}{\partial x} \frac{\partial}{\partial x_{\zeta_s}} + \frac{\partial \phi_u}{\partial y} \frac{\partial}{\partial y_{\zeta_s}} \right) \| \nabla \Phi_s \|^2 + g \frac{\partial \phi_u}{\partial z} + \\ \zeta_u \frac{\partial}{\partial z} \left(\frac{1}{2} \left(\frac{\partial \Phi_s}{\partial x} \frac{\partial}{\partial x_{\zeta_s}} + \frac{\partial \Phi_s}{\partial y} \frac{\partial}{\partial y_{\zeta_s}} \right) \| \nabla \Phi_s \|^2 + g \frac{\partial \Phi_s}{\partial z} \right) = 0. \end{split}$$
 For $\Phi_s = Ux$
$$\frac{\partial^2 \phi_u}{\partial t^2} + 2U \frac{\partial^2 \phi_u}{\partial x \partial t} + U^2 \frac{\partial^2 \phi_u}{\partial x^2} + g \frac{\partial \phi_u}{\partial z} = 0 \quad \text{on } z = 0. \end{split}$$

Slow ship in short waves

For
$$\Phi_s = \Phi_r(\mathbf{x})$$
, with $\mathbf{u} = (u, v, w) = \nabla \Phi_r(\mathbf{x})$ (Baba)
$$\frac{1}{g} \left[\frac{\partial}{\partial t} + u \frac{\partial}{\partial x} + v \frac{\partial}{\partial y} \right]^2 \phi + \frac{\partial}{\partial z} \phi = 0 \quad \text{on } z = 0,$$

Ray expansion

$$\phi(\mathbf{x}, t; k) = a(\mathbf{x}, k) e^{ikS(\mathbf{X}) - i\omega t},$$

$$a(\mathbf{x}, k) = \sum_{j=0}^{N} \frac{a_j(\mathbf{x})}{(ik)^j} + o((ik)^{-N}).$$

with $k = \omega^2/g$ and $\omega = \omega_0 + k_0 U \cos \theta$

Asymptotic formulation

Eikonal equation with $\mathbf{p} := (S_x, S_y)$

$$F(x, y, S, p, q) = (1 - \mathbf{u} \cdot \nabla S)^4 - \nabla S \cdot \nabla S = 0.$$

Transport equation

$$\{2\nabla S + 4(1 - \mathbf{u} \cdot \nabla S)^3 \mathbf{u}\} \cdot \nabla a_0 + a_0 MS = 0,$$

where

$$MS = \Delta_3 S - 2\mathbf{u} \cdot \nabla (\mathbf{u} \cdot \nabla S)(1 - \mathbf{u} \nabla S)^2.$$

Characteristic equations

$$\frac{dx}{d\sigma} = F_p = -4(1 - \mathbf{u} \cdot \mathbf{p})^3 u - 2p,$$

$$\frac{dy}{d\sigma} = F_p = -4(1 - \mathbf{u} \cdot \mathbf{p})^3 v - 2q,$$

$$\frac{d\rho}{d\sigma} = -(F_x + \rho F_S) = 4(1 - \mathbf{u} \cdot \mathbf{p})^3 (\mathbf{u}_x \cdot \mathbf{p}),$$

$$\frac{dq}{d\sigma} = -(F_y + qF_S) = 4(1 - \mathbf{u} \cdot \mathbf{p})^3 (\mathbf{u}_y \cdot \mathbf{p}).$$

$$\frac{dS}{d\sigma} = \rho F_p + qF_q = -4(1 - \mathbf{u} \cdot \mathbf{p})^3 + 2\mathbf{p} \cdot \mathbf{p}.$$

$$\frac{da_0}{d\sigma} = a_0 MS.$$

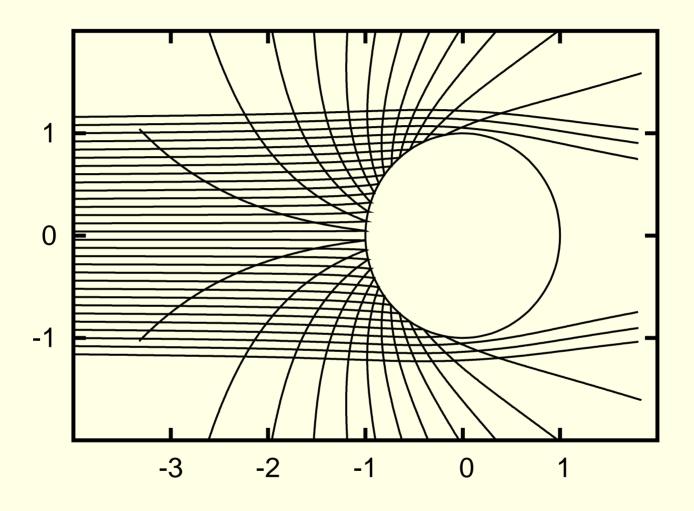
and

Characteristic equations

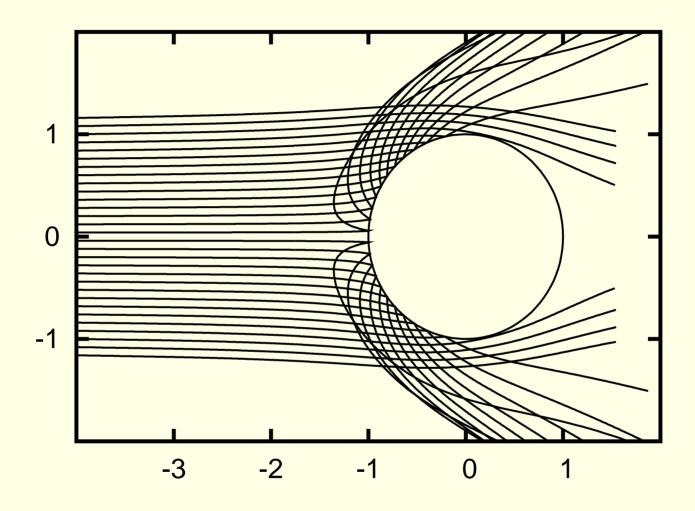
This operator MS has the final form

$$MS = S_{xx} \left\{ 1 - 2|\nabla S|u^2 - \frac{S_x^2}{S_x^2 + S_y^2} \right\} + S_{xy} \left\{ -4|\nabla S|u^2 - 2\frac{S_x S_y}{S_x^2 + S_y^2} \right\} + S_{yy} \left\{ 1 - 2|\nabla S|u^2 - \frac{S_x^2}{S_x^2 + S_y^2} \right\} - 2|\nabla S|\nabla (\mathbf{u} \cdot \mathbf{u}) \cdot \nabla S.$$

Ray pattern $\tau = 0.25$



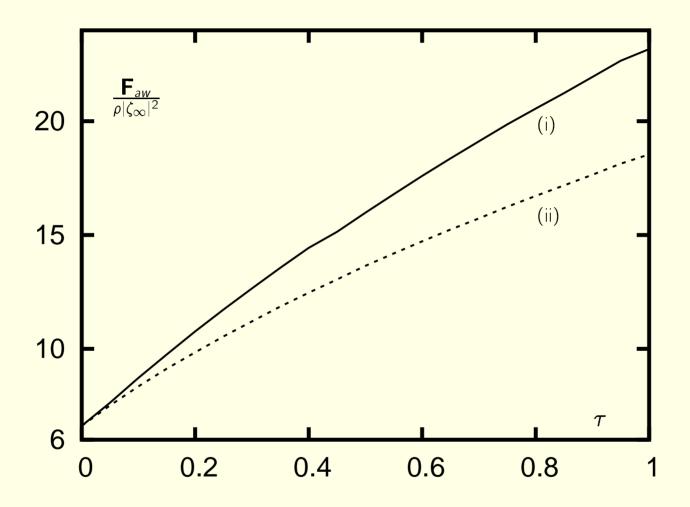
Ray pattern $\tau = 0.5$



Added resistance

$$\mathbf{F}_{aw} = -\overline{\int_{z=-\infty}^{\zeta} \int_{WL} p \mathbf{n} \, dI \, dz} = \\ -\frac{1}{4} \int_{WL} \left\{ \left(\nabla S^{(i)} \cdot \nabla S^{(i)} \right)^{\frac{1}{4}} a_0^{(i)} + \left(\nabla S^{(r)} \cdot \nabla S^{(r)} \right)^{\frac{1}{4}} a_0^{(r)} \right\}^2 \mathbf{n} \, dI \\ + \frac{1}{4} \int_{WL} \left\{ a_0^{(i)^2} \left| \nabla S^{(i)} \right| + a_0^{(r)^2} \left| \nabla S^{(r)} \right| + \\ 2 a_0^{(i)} a_0^{(r)} \frac{\nabla S^{(i)} \cdot \nabla S^{(r)} + \left| \nabla S^{(i)} \right| \left| \nabla S^{(r)} \right|}{\left| \nabla S^{(i)} \right| + \left| \nabla S^{(r)} \right|} \right\} \mathbf{n} \, dI.$$

Added resistance for (i) a circular cylinder and (ii) a sphere



Numerical formulation

With time-step Δt we use the second order difference schemes:

$$\frac{\partial^2 \phi^i}{\partial t^2} = \frac{1}{(\Delta t)^2} \left(2\phi^i - 5\phi^{i-1} + 4\phi^{i-2} - \phi^{i-3} \right) + \mathcal{O}\left((\Delta t)^2 \right)$$
$$\frac{\partial \phi^i}{\partial t} = \frac{1}{\Delta t} \left(\frac{3}{2}\phi^i - 2\phi^{i-1} + \frac{1}{2}\phi^{i-2} \right) + \mathcal{O}\left((\Delta t)^2 \right)$$

This leads to the following FSC

Numerical formulation

$$\phi^{i}\left(\frac{2}{(\Delta t)^{2}} - \frac{T}{gS}\frac{3}{2\Delta t}\right) + \nabla\Phi_{s} \cdot \nabla\left(\nabla\Phi_{s} \cdot \nabla\phi^{i}\right) + \left(2\frac{3}{2\Delta t} - \frac{T}{gS}\right)\nabla\phi^{i} \cdot \nabla\Phi_{s} + g\frac{\partial\phi^{i}}{\partial z} + \frac{1}{2}\left(\frac{\partial\phi^{i}}{\partial x}\frac{\partial}{\partial x_{\zeta_{s}}} + \frac{\partial\phi^{i}}{\partial y}\frac{\partial}{\partial y_{\zeta_{s}}}\right) \|\nabla\Phi_{s}\|^{2} = f \quad \text{on } z = \zeta_{s}$$

$$T = \frac{\partial}{\partial z}\left(\frac{1}{2}\left(\frac{\partial\Phi_{s}}{\partial x}\frac{\partial}{\partial x_{\zeta}} + \frac{\partial\Phi_{s}}{\partial y}\frac{\partial}{\partial y_{\zeta}}\right) \|\nabla\Phi_{s}\|^{2} + g\frac{\partial\Phi_{s}}{\partial z}\right) \quad \text{on } z = \zeta_{s}$$

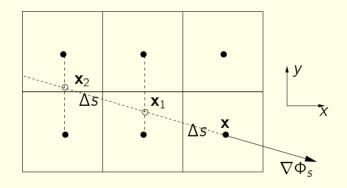
$$S = 1 + \frac{1}{2g}\frac{\partial}{\partial z}\|\nabla\Phi_{s}\|^{2}$$

$$f = \frac{5\phi^{i-1} - 4\phi^{i-2} + \phi^{i-3}}{(\Delta t)^{2}} + \left(2\nabla\Phi_{s} \cdot \nabla - \frac{T}{gS}\right)\frac{\left(2\phi^{i-1} - \frac{1}{2}\phi^{i-2}\right)}{\Delta t}$$

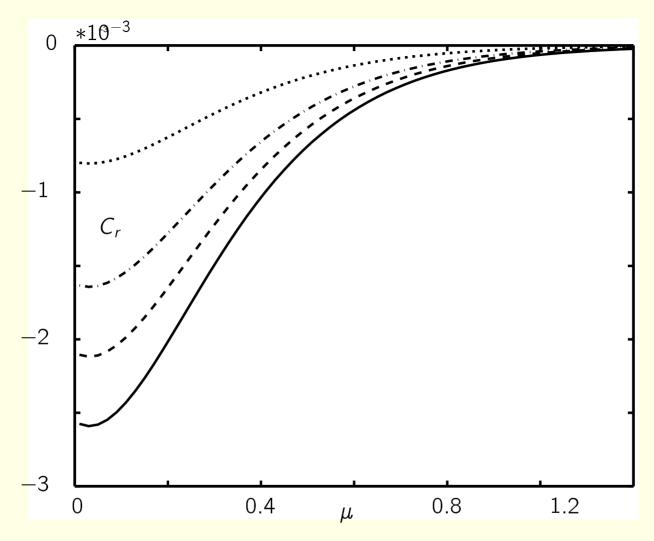
Numerical formulation

For example, we write

$$\nabla \Phi_{s} \cdot \nabla \phi = \|\nabla \Phi_{s}\| \frac{\frac{3}{2} \phi(\mathbf{x}) - 2\phi(\mathbf{x}_{1}) + \frac{1}{2} \phi(\mathbf{x}_{2})}{\Delta s} + \mathcal{O}\left((\Delta s)^{2}\right)$$
 difference scheme for $\nabla \Phi_{s} \cdot \nabla \phi$.

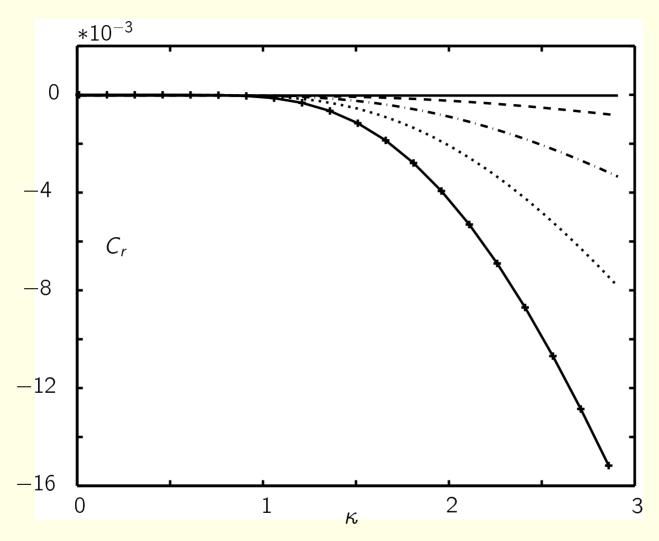


Deviation in the dispersion



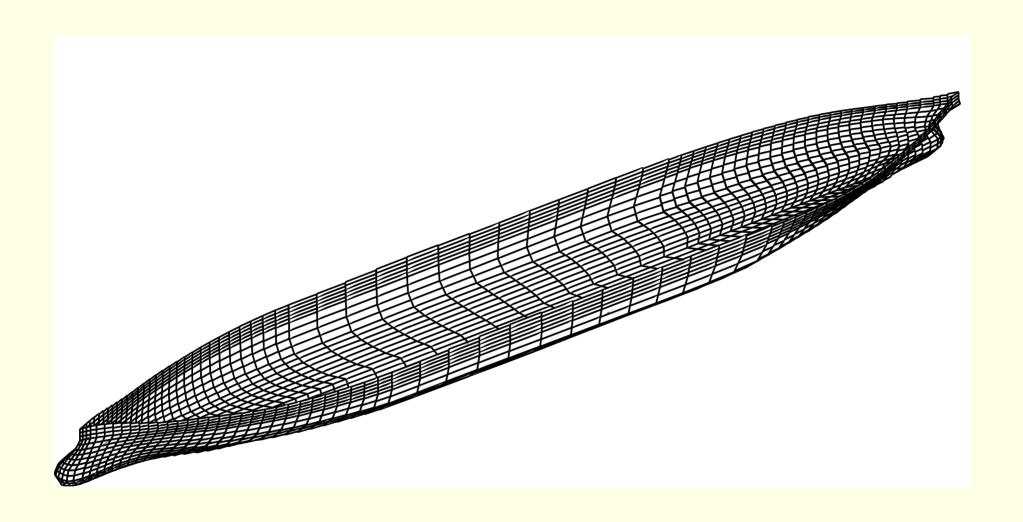
 $\tau = 5$, 1, 0.5, 0.25 (top down), Fn = 0.4, $\theta = 0$, $\kappa = 1$, $\widehat{\alpha} = 0.05$.

Deviation in the dispersion

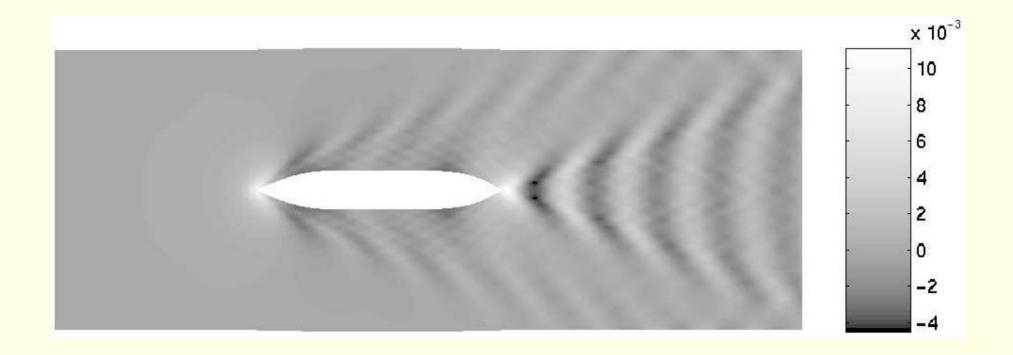


 $\theta = 0$, $\pi/8$, $\pi/4$, $3\pi/4$, $\pi/2$ (top down), Fn = 0.4, $\widehat{\alpha} = 0.05$, $\mu = 1$, $\lambda = 1$.

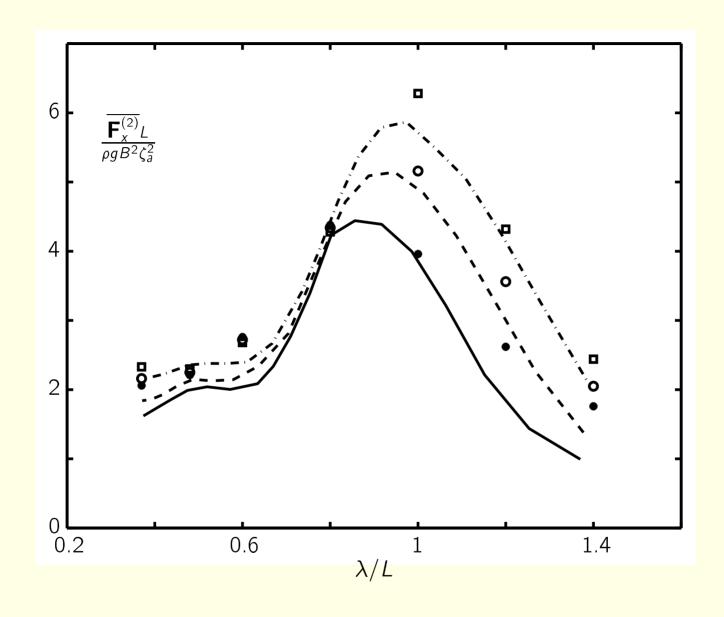
Hull paneling of LNG carrier for Froude number 0.2.



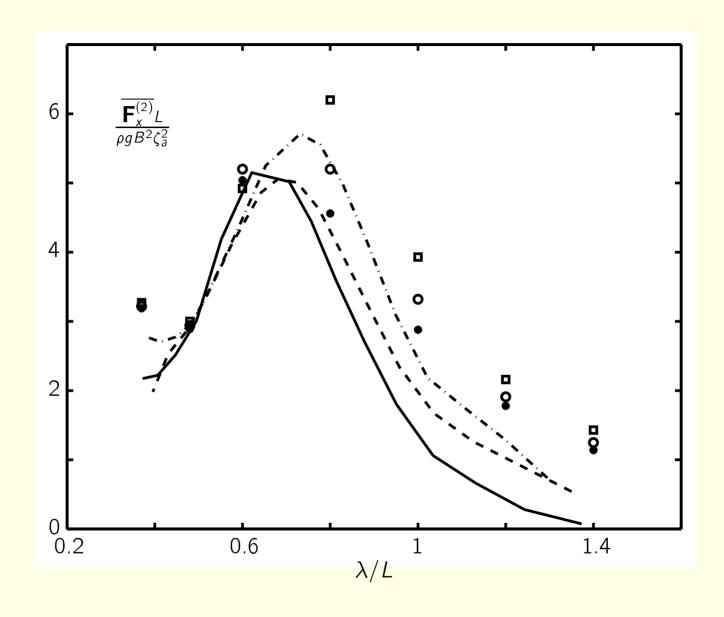
Steady wave pattern for Froude number 0.2



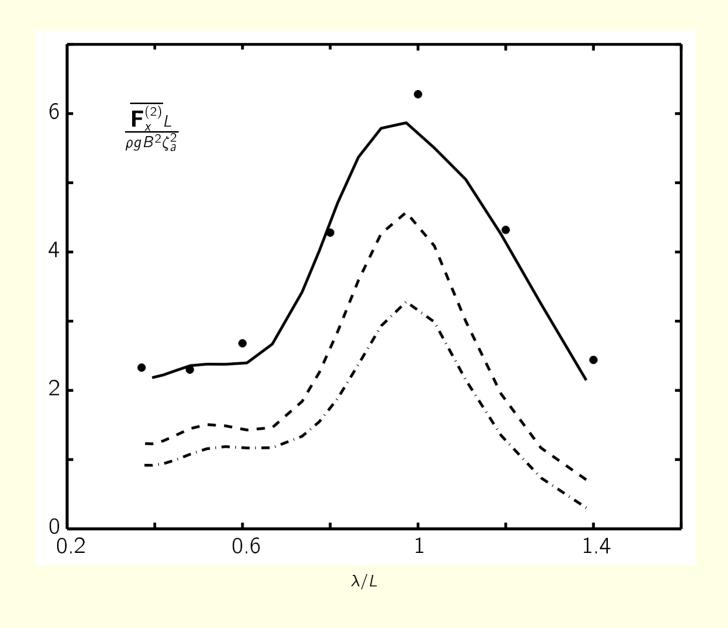
Added resistance $F_n = 0.2, 0.17, 0.14$



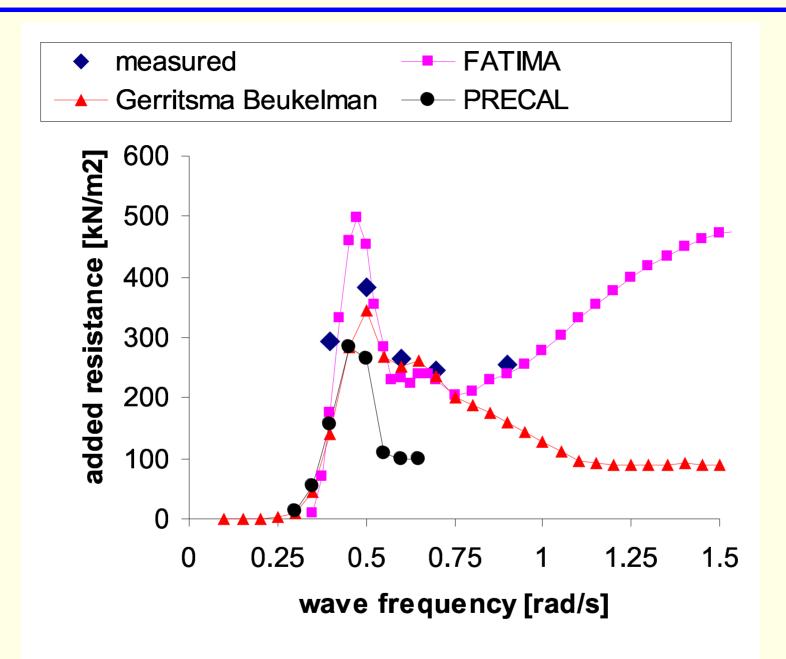
Added resistance (bow-quartering)



Added resistance with different steady flow



Results cruise carrier



Comparison with asymptotic results

