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ABSTRACT: The reconstruction problem of electrical impedance tomography (EIT)
is to estimate the distribution of the conductivity inside an object from measured
potential distributions on the circumference caused by injected current patterns.
Mathematically, this reconstruction problem is an ill-posed nonlinear inverse prob-
lem, with many unknowns. In this paper, the ill-posed nature is demonstrated by
analyzing the condition of the sensitivity matrix; the associated inverse problem can
only be solved on a very coarse grid. To circumvent the ill-posed nature of the EIT
reconstruction problem, we present a new parametric formulation. In this formula-
tion, it is assumed that the object consists of compartments with homogeneous con-
ductivity. The position, orientation, size, and conductivity of these compartments are
treated as unknown parameters, which are determined by solving the forward prob-
lem (using the boundary element method) and optimizing the parameters (using
Powell’s or the simplex method) in order to fit the parameters to the EIT data. Simu-
lations show that the parametric method is stable and adequately solves the EIT
problem.

INTRODUCTION

Electrical impedance tomography (EIT) is a technique to derive the distribution of the
conductivity inside an object by injecting electric currents into the object and measuring
the resulting potential distributions. This technique has applications in geophysics,'?
industry,” and biomedical engineering.* From a mathematical point of view, the EIT recon-
struction problem is a rather difficult one. It is a nonlinear, ill-posed inverse problem with
many unknowns. In a 2D image, the number of unknowns equals the number of pixels of
the EIT image, typically on the order of 100 to 400.

Various EIT reconstruction techniques have been proposed and applied in the litera-
ture.” There is the more or less heuristic approach of Barber and Brown,®*” which was later
given a firm mathematical basis in reference 8. This algorithm is very fast, but it is
restricted to objects with a circular geometry. Another class of solution methods is based
on an iterative application of the finite element method (FEM).” Here, the FEM is used to
solve the forward problem (predicting the potentials for a given conductor geometry), and
the differences between the predicted and measured potentials are minimized using a
Newton-like algorithm. This “brute force” approach can be applied without a priori
restrictions on the geometry, but is very time-consuming.
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A completely different approach is to linearize the nonlinear problem, starting from a
homogeneous conductor.'® In this approach, the dependence of the measured potential dis-
tribution on the unknown impedance distribution is approximated by using a series expan-
sion that is truncated at linear order. In this way, conductivity corrections to the
homogeneous approximation can be found by solving a linear system of equations. The
corresponding system matrix is usually called the sensitivity matrix. In the first part of this
paper, we investigate the practical usefulness of this method by analyzing the condition of
the sensitivity matrix for different discretizations of the conductivity.'!

In the second part of the paper, we present a new formulation of the EIT reconstruc-
tion problem. Instead of trying to reconstruct the individual pixels of the image, we put
as a priori information into the model that the object consists of compartments with con-
stant (homogeneous) conductivity. The sizes, positions, and orientations of these com-
partments are treated as unknown parameters, whose values have to be estimated from
the data using a parameter fitting procedure. The model predictions, that is, the com-
puted potentials for a given conductor geometry, can be efficiently obtained using the
boundary element method.'? Simulations with our parametric formulation show that the
EIT reconstruction problem transforms from an ill-posed nonlinear problem with many
unknowns into a stable nonlinear parameter estimation problem with only a few
unknowns.

THE SENSITIVITY MATRIX METHOD

The core equation of EIT, which describes the relationship between the conductivity
o(x), the potential y, and the applied current density j, is here stated as
V. (cVy) = 0, xe Q
. . n
oVy-it = j, xe Q.

Here, Q represents a 2D cross section of the object, dQ represents its circumference, and
n represents its outside normal. The current j is assumed to be zero, except at two points
representing the injection electrodes. In this paper, we only consider the 2D version of the
EIT problem. Therefore, we ignore the fact that, in practice, the currents may tlow in three
dimensions.

When v, and v are two solutions of equation | with boundary conditions, j, and j,,
the following identity can be derived:'

Upplp = jGVWA - VypdQ. (2)
o

Here, I is the total current flowing through electrode pair B. Furthermore, U, is the
potential difference measured by electrode pair B caused by a current injection of [,
through electrode pair A. In other words, U, is identical to the potential y,(x) evaluated
at electrode pair B.

In a perturbation analysis, the conductivity and the potentials are expanded as follows:
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3
c(x) = c(o) + G(l)(x) + 0(2)(x) +
v = oy o+ W o« WP o+
Urg = 2y R T
v = v o+ v o+ v o+

It is assumed that these series converge rapidly, so higher order terms are significantly
smaller than lower order terms. Furthermore, it is assumed that 6! is constant in Q. When
the series expansions of equation 3 are substituted into equation 2 and terms of equal order
in U, are collected, one finds after some manipulations (of which the details are
described in a forthcoming paper'*) that

UE;OI;IB = IG(O)V\V V\y(o) @
o)

and

U, {G(nvw vy )
Q

When the potential is approximated to first order, that is, Uy, = U;O,; f“l,;, the fol-
lowing linear relation between the measured potentials and the conductivity correction
86 =0 - o'V is found:

IBGVW;O) . ng))dQ

Uyp=2 (6)

Ip

In the reconstruction algorithm, this equation will be applied as follows. First, an initial
guess 0(0) of the conductivity distribution is made. Using this guess, the potentials AO (x)
and \uB (x) are computed. Then, equation 6 gives a linear integral relationship between
the measured potentials U, and the correction 8(x) of the initial guess ¢'”. Since the
measurements U,z form a discrete set, the correction 86(x) has to be discretized too. This
discretization is obtained by expanding 3c(x) in a set of hat-shaped base functions h,(x),
derived from a triangular grid (see FIGURE 1):

N-1
do(x)= Y 80,h,(x). )
n=0
In this way, a piecewise linear approximation of the conductivity distribution is obtained,
with 86 = 86, on the n-th node. When the indices A and B, representing the applied current
and voltage pairs, run over all noncoinciding and independent electrode pairs, equations 6
and 7 transform into a linear system of equations with the 8G, as unknowns:
N-1
U= 85,50, k=0,.,K-1 8)
n=0



DE MUNCK et al.: PARAMETRIC METHOD 443

FIGURE 1. The discretization of the conductivity profile is obtained by expanding the conductivity
in a series of hat-shaped functions, which are derived from a triangular grid. Here, the base function
h,(X) is shown, which equals | at node x,, and falls off linearly to zero at the neighboring nodes.

Here, the combinations of A and B are referred to by the index k. The matrix S, is the so-
called sensitivity matrix, which can be expressed as

[0V ) - Vg (x)de
Q

n IB

Sk )

In theory, the number of discretization points N can be chosen equal to the number of
independent measurements. In the case that neighboring electrodes are used, this number
is K = (1/2)N (N, — 3), with N, being the number of electrodes. In FIGURE 2A, a discretiza-
tion is shown, with N, = 16 electrodes and K = 104 nodes. However, in practice, the num-
ber of discretization points that can be reconstructed may be much smaller because many
of the equations in equation 8 may be (almost) linearly dependent. When this is the case,
the solution of equation 8 becomes unstable and highly sensitive to modeling errors and to
noise in the measurements. The problem can be simply solved by taking less discretization
points than the number of independent measurements (N < K) and finding the least-
squares solution of the overdetermined system of equations. In FiGures 2B and 2C, such
discretizations are depicted, with N = 48 and N = 28 nodes.

A least-squares solution can be found by performing a singular value decomposition
(SVD) on the matrix S:'°

-1
St = S AUy, with Ag2A,2h, 2. 2hy 20, (10)
i=0

where the sets of vectors u; and v, are the orthonormal sets of dimensions K and N, respec-
tively. When N is chosen so small that all singular values A, are positive, the least-squares
solution of equation 7 can be expressed as
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where 8o and U represent the vectors of the unknowns and the measurements, respec-
tively. Equation 11 nicely demonstrates the instability of the solution when the equations
become almost linearly dependent. In that case, the smallest singular values tend to zero
and blow up the reconstruction when U contains measurement errors.

RESULTS: THE SENSITIVITY MATRIX

To investigate the practical possibilities of the sensitivity matrix method, we assumed
that the object had a circular shape. In this case, the potentials \uﬁ‘m and \yg)) can be com-
puted analytically. However, the integrations in equation 9 have to be performed numeri-
cally. We furthermore assumed that all currents are injected through neighboring
electrodes and that they are equal in magnitude. Finally, it is assumed that the potentials
are also measured by neighboring electrodes and that the number of electrodes equals 16.
For this case, the sensitivity matrix (equation 9), its singular values (equation 10), and its
conductivity distribution (equation 11) were computed.

FiGURE 3 shows the singular values as a function of the index i. Obviously, the singular
values range over 16 orders of magnitude, indicating the instability of the solution of the
inverse problem. One way to deal with this problem is to smooth the inverse solution by
truncating the series in equation 11 or to add a positive constant to all A; terms. However,
the quality of the inverse solution so obtained is highly dependent on the exact way that
the smoothing is obtained (e.g., see reference 11). Therefore, we choose to reduce the
number of unknowns instead, using the grids depicted in Figures 2B and 2C.

To demonstrate the performance of the method, we show here the result of a simulation
study. A set of measurements was simulated by assuming a circular conductor with con-
ductivity 1 (in arbitrary units) and two circular holes with conductivities 0.9 and 0.8; see
Ficure 4. The conductivities were chosen close to 1 because only then we may assume that
the series in equation 3 will converge fast enough.

For the initial guess, the correct value of 1 was chosen. The sensitivity matrix was
determined and the conductivity distribution was estimated using equation 11. FIGURE 5
shows the results on a grid of 48 points (A) and on a grid of 28 points (B). It appears that
the main characteristics of the true impedance image are well estimated. However, the
sizes of the smaller circles are hard to estimate from the reconstructed images. Other sim-
ulations, not shown here, also demonstrate that the main characteristics are estimated well
with both the 48- and 28-point grids.

Our conclusion about the sensitivity method is that, when no noise is present, it is capa-
ble of reconstructing the low spatial frequencies, but only when the reconstruction is per-
formed on a coarse grid. Detailed information of the object cannot be retrieved. Although,
in principle, the number of pixels that can be reconstructed equals (1/2)N(N, — 3}, in prac-
tice this upper bound is far too optimistic. Furthermore, the method is based on the
assumptions that a good first guess of o' is available and that the true conductivity distri-
bution does not deviate too much from this constant.
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FIGURE 3. The distribution of the singular values of the sensitivity matrix S for the case of a circu-
lar cross section with 16 electrodes attached to the circumference. It follows that the singular values
are within a range of 16 orders of magnitude, indicating that the full system of equations contains
many linear dependencies and hence that the reconstruction is highly unstable.

THE PARAMETRIC METHOD

To overcome the difficulties of the sensitivity matrix method, we propose a reconstruc-
tion method in which the number of parameters that have to be estimated is limited and in
which no linearization assumptions are required. In this proposed method, we assume that
the object consists of compartments with constant conductivity, with unknown positions,
orientations, sizes, and conductivities. With such a method, it is also very simple to use a
priori information in the reconstruction, by simply setting some parameters to a known
constant. The inverse problem is to determine that set of parameters giving the best
description of the measurements.

For the application of the parametric method, two problems have to be solved—the for-
ward and the inverse problem. The forward problem is to determine the potential distribu-
tion at the measuring electrode for a given set of current injection electrodes and a given
conductor geometry. The inverse problem—the geometry of the conductor—is adapted
iteratively in such a way that the deviation between the measured and the predicted poten-
tials is minimum. Since we assume a piecewise constant conductivity profile, we can use
the boundary element method (BEM)'? in the forward computations. The BEM is based
on the discretization of an integral equation that gives an implicit relationship between the
potentials on the surfaces of a conductor with a piecewise constant conductivity. When a
current density j(x) is injected into the surface I, of an isolated 2D conductor (FIGURE 6),



DE MUNCK et al.: PARAMETRIC METHOD 447

FIGURE 4. The conductor used for the simulation study to test the performance of the sensitivity
method. The conductivity equals 1 (in arbitrary units), except at two circular parts. The conductivity
of the upper circle equals 0.9, whereas the conductivity of the lower circle equals 0.8.

which consists of a set of J nested contours I'; (j =0, ..., J— 1) with inner conductivity
o; and outer conductivity o, , the following system of integral equations is valid for the
potential y(x) on the contours:

J-1
o (x)+ o x)]y(x) = §1og(R"‘)j0dy'+ 2(o;~o;)§wV’1og(R“)®dy (12)
r() j=0 rj

where R=|x-x'|,xe I'j,and k = 0, ...,/ 1.

Here, V’ is the gradient operator with respect to the integration point X', dy” is a line
element along the contour, and the operator ® yields the determinant of the vectors
V’log(R™") and dy’. Equation 12 can be obtained in a way very similar to reference 16,
where an integral equation for the potential distribution caused by a current source inside a
piecewise constant conductor is derived. Instead of the infinite medium potential that
appears in references 12 and 16, we here have the first integral on the right-hand side play-
ing the role of the source term.

Equation 12 can be discretized by expanding the potential in a set of hat-shaped base
functions £,(x),

N-1
vz 3 y,h,x, (13)

n=0
and subdividing the contours into a set of segments ranging from X, to X, X; t0 X, . . . ,Xy_

to x,_;. The base functions are chosen such that they equal 1 at the point x, and linearly
fall off to zero for points before and after the point x,, (FIGURE 7).
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FIGURE 6. Graphical presentation of the geometry of the problem and the meaning of the sym-
bols. The outer conductivity of a contour if the i+nner confjucti\iity of another contour. In the exam-
ple presented here, we have ©;=0,=0; and 6,=06,. The conductor is completely
characterized by the shapes of the contours and their inner conductivities.

Similar to the derivation of the system of equations in the sensitivity matrix method, we
obtain a linear system of equations when equation 13 is substituted into equation 12:

N-1
AnuVy = hm (14)
0

=

where the matrix elements a,,, and the right-hand side b,, can be computed analytically.'”
The system itself can be solved using a standard LU decomposition. By nature of the
boundary element method and contrary to the sensitivity matrix method, the potential at
the boundaries is discretized instead of the (unknown) conductivity inside the complete
object. Therefore, in both discretizations, different types of base functions are involved.

The inverse problem is to find that combination of parameters for which the difference
between the measured and predicted is minimum. This difference can be expressed in the
cost function E:

;lE’AB—UAB|
E=Y2 . 100% 1s)
; | Uas|
B

where U, denotes the measured potential difference on electrode pair B caused by a cur-
rent injection on electrode pair A, and Usp denotes the corresponding model prediction.
The index A runs over all pairs of current injection electrodes that are used in the data
acquisition and B runs over all voltage-measuring electrode pairs, except those that coin-
cide with one of the current injection electrodes.

The predicted potentials Usp depend on the positions, shapes, and inner conductivities
of the contours representing the conductor. In the inverse algorithm that we are proposing,
a conductor is chosen as a starting value and next the contours are shifted, rotated, and
stretched,
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FIGURE 7. The base functions used to expand the potential. These functions are defined for x on a
contour. They equal unity at one of the vertices and gradually fall off to zero at the next and the pre-
vious vertex on the contour.

(Ef,j = (”‘.’“P - “‘Si“‘P)(é) + (’i), (16)
ul ssin@ scos® \n Iy

in order to minimize the cost function. Here (t‘i’ tn)T is the translation vector, @ is the rota-
tion angle, and s is the stretching parameter. These transformations are separately applied
for each contour. With this parameterization, there are four unknowns per contour, exclud-
ing the inner conductivity.

The minimization of the cost function is a nonlinear problem that can only be solved
by iterative methods. For a proper functioning of nonlinear minimization methods, the
parameters should be scaled such that a fixed step in each of the scaled parameters
roughly has the same effect on the cost function. Furthermore, the parameters s and ¢~
are kept positive by optimizing their logarithms. Each time that the minimization algo-
rithm computes the next step, it uses the scaled parameters; and each time that this algo-
rithm requires a cost function evaluation, the parameters are transformed back into their
unscaled versions. We used either the simplex method or Powell’s method'> to minimize
the cost function.

RESULTS: THE PARAMETRIC METHOD

To test the efficiency and robustness of our proposed inverse algorithm, we used a stan-
dard conductor shown in FiGure 8. This conductor has a conductivity 6~ = 1, and it con-
tains two large structures with a low conductivity (¢~ = 0.1) and a small good-conducting
structure (6~ = 10). Because of the resemblance between the standard geometry and the
2D cross section of the torso, the inner structures of the conductor will hereafter be
referred to as lungs and aorta. It is assumed that the standard conductor has 32 equally
spaced electrodes mounted on its outer contour.
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FIGURE 8. “Standard” conductor from which simulations are performed. The outer ellipse has a
conductivity of ¢~ = 1, the two big elliptical structures are relatively poor conducting (¢~ = 0.1), and
the small circle is good conducting (0™ = 10).

We studied the behavior of the simplex and Powell’s minimization algorithms. In a
simulation study, the standard geometry was distorted by moving, rotating, and scaling
the lungs and keeping the other contours constant. Twenty-five random distortions were
applied and, for each of these distortions, it was attempted to find back the standard
geometry using the distorted geometry as a starting value and the potentials U, of the
standard geometry as simulated data. The success rate and the number of BEM evalua-
tions were determined. The success rate is defined as the relative number of reconstruc-
tions, for which the average distance between the standard conductor and the
reconstructed conductor is less than 1% of the conductor’s diameter. Here, the average
distance is computed by averaging all distances between corresponding points (of the free
contours). The number of BEM evaluations is proportional to the total computation time
of the inverse algorithm.

It appears from TasLE 1 that the success rate of Powell’s algorithm is 88% and that for
the simplex method is 100%. The number of BEM evaluations is of the same order of
magnitude.

TABLE 1. A Comparison of the Performance between the (Modified)
Simplex and Powell’s Minimization Method

Number of BEM
Minimization Method Success Rate Evaluations
Powell’s 88% 820

Simplex 100% 1024
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DISCUSSION

Comparing the sensitivity matrix method and the parametric method from a theoretical
point of view, we note that the applicability of the parametric method is much less
restricted. With the sensitivity matrix method, a first guess of the conductivity is required,
from which the true conductivity distribution must not deviate too much. Otherwise, the
linear approximation becomes invalid. One could attempt to circumvent this disadvantage
by deriving higher order approximations or by starting from an inhomogeneous distribu-
tion 6'%(x) as a first guess. However, whether such variants would yield practical recon-
struction methods is questionable because the derivation of equation 6 is based on the
assumption that 6@ is constant.

One could object that the comparison between both methods is not fair because the
number of electrodes was 32 in the simulations with the parametric method and this num-
ber was only 16 with the sensitivity matrix method. Moreover, the number of unknowns
was 8 with the parametric method and it was minimally 28 with the sensitivity matrix
method. The reason why we used only 16 electrodes with the sensitivity matrix method is
that, because of the piecewise linear approximation of the conductivity, with a larger num-
ber of electrodes, more triangles would have to be chosen at the boundary. This would
decrease the resolution at the center still further. Furthermore, we consider the fact that the
number of unknowns in the parametric method was only 8 as a special advantage of this
method. With the sensitivity matrix method, the use of a grid with 8 nodes would have no
practical meaning because the resolution would be too low.

The main theoretical restriction of the parametric method is the assumption that the
object consists of nested compartments with constant conductivity. In principle, one could
avoid this restriction by taking a sufficient number of small compartments. Practica 'imi-
tations of this approach are that the method could become unstable and that the computa-
tion time would increase enormously. With the simulations presented in the previous
section, where the number of compartments is limited, on average 1000 BEM evaluations
were required, taking about 30 minutes on a fast PC.

Currently, the computation time is the main drawback of the parametric method. There
are various possibilities to speed up the algorithm. First, one could use iterative methods to
solve equation 14 instead of a full LU decomposition. Good initial guesses are available
from previous cost function evaluations. Second, one could use the method described in ref-
erence 18 to solve a series of boundary element problems, in which only one or two compart-
ments are different. Third, one could investigate whether our modifications of the simplex
and Powell’s method could be improved. However, we do not expect that these improve-
ments will ever make the parametric method faster than the sensitivity matrix method, where
each image reconstruction only requires a simple matrix vector multiplication.

The parametric method and the sensitivity matrix method also differ in the way that a
priori knowledge is used in the reconstruction and in the amount of a priori knowledge
used. For this reason, we will continue to explore both methods not only from a theoretical
point of view, but also from a clinical point of view. In some cases, where one is interested
in extracting detailed physical quantities from the data, and sufficient a priori information
is available, the parametric method would be the most favorable algorithm. In other cases,
where one is interested in fast changes in gross anatomy, the sensitivity matrix method is
the method of choice.
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