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Light diffusion in stochastically perturbed media
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In a medium such as biological tissue, the optical parameters may vary widely within a small volume. These
small-scale variations cause variations in the light dose. A method is presented that quantifies (in the diffusion
approximation) the average value and the standard deviation of the light fluence rate in a medium with sto-
chastic optical parameters. Four optical parameters (A., ., g, and g,') are modeled separately at each point in
the medium as samples of correlated distributions. We find that the mean value differs only slightly from the
fluence rate calculated with the average optical parameters. When the standard deviation of the optical pa-
rameter is 30%o, the standard deviation of the stochastic fluence rate is of the same order of magnitude as the
average fluence rate itself. Relative to the average value of the fluence rate, the standard deviation increases
steadily with distance from the source: the fluence rate is more noisy deep in the medium.

INTRODUCTION

Traditionally, light distributions in scattering media are
calculated with the use of deterministic optical parame-
ters. These optical parameters are measured many times,
and the average values are used for the calculations (see,
e.g., Ref. 1). In that way, the media are assumed to be
homogeneous on a small scale. In reality, only a few are.
For example, in biological tissues the absorption coeffi-
cient varies widely within each cell. If one calculates
light fluence rates in an inhomogeneous medium deter-
ministically (using only the average values of the optical
parameters), one also needs an indication of the range
over which the actual (stochastic) fluence rates vary.

In this paper, the description of light transport is sim-
plified by use of the diffusion approximation (P1 approxi-
mation). In highly scattering media, diffusion theory
describes the bulk of light transport and is accurate enough
for describing the main stochastic effects. Furthermore,
only one simple geometry is considered: an infinitely
thick, stratified medium irradiated by a diffuse light beam.
Although this one-dimensional geometry is in most cases
not a realistic one, results for this geometry give an indica-
tion of the effects in other (three-dimensional) geometries.

A method is derived for calculating the expected value
of the stochastic light fluence rate. If the expected value
differs significantly from the deterministic fluence rate
then a deterministic calculation is biased and inaccurate
as is the case, for example, in Ref. 2. Furthermore, to
quantify the variations of the stochastic fluence rate, we
derived a method for calculating the standard deviation of
the light fluence rate. The results are given for a typical
biological tissue during a medical laser treatment.

METHOD

Diffusion Theory
To study the effect of stochastic optical parameters on the
light fluence rate, a one-dimensional tissue geometry is
chosen, as shown in Fig. 1. An infinitely wide and infi-
nitely thick medium is irradiated by a diffuse light source

(by diffuse we mean uniformly distributed in angle). Op-
tically, the medium can be characterized by the following
parameters: the absorption coefficient /j,. and the scat-
tering coefficient A,, (both in inverse centimeters); the
mean cosine of the scattering angle g; and n, the index of
refraction of the medium as compared with that of the
surroundings. Derived optical parameters, used in diffu-
sion theory, are the reduced scattering coefficient gp' = Ls
(1 - g), and the reduced total attenuation coefficient
_tt = a + M,,'. In this paper, t&a, ,t~s, g, and I-L.' are con-
sidered stochastic parameters, one at a time.

Light transport in a highly scattering medium can be
well approximated by diffusion theory.3' 4 In the geometry
of Fig. 1, the governing equations for the light fluence rate
i(z) and the light flux F(z) (both in watts per square
centimeter) are given by5

dz ) + 3tr(z)F(z) = 0,
dz

FWz + /La(Z)P(Z) = 0,
dz

4I(0) + 2AF(O) = F,

lim"I(z) = 0,
2 Bo

(la)

(lb)

(ic)

(1d)

where A and F account for internal reflections at the
boundary surface':

1= + R2m,,

1 - R1m

A = 4Fi 1 - Ri
= 4Fc1 - R1

(2)

(3)

Here Fine is the incident flux. For each i, Ri is a different
moment of the Fresnel reflection function for unpolarized
light, R(A). Subscript s refers to reflection of light in the
surroundings of the medium at the surface of the medium.
Subscript m refers to reflection of light in the medium at
the other side of the same surface. When the index of re-
fraction of the tissue and that of the surroundings match
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We consider a medium in which one of the optical
parameters is sampled from a statistical distribution at
each depth z. The one parameter that is varied is de-
noted /-i. Parameter -,L is i-a, Aus, g or the combination

= A, (I - g). We assume to be the sum of a constant
average value, Po, plus a statistical disturbance, Aj(z).
Variation ,uj(z) is small compared with AO. The correla-
tion between AI distributions at two different depths is
assumed to decrease exponentially with distance. 9-

Fig. 1. Geometry: a one-dimensional medium of infinite thick-
ness is irradiated with a diffuse light source with a total flux Fin.

(i.e., n = 1), the terms Ri are zero. Then in Eq. (c), fac-
tor A equals 1 and Fj equals 4Finc. When n 0 1, the defi-
nition of Ri is

Ri = (i + 1)f /iR(I)dL, (4)

where R(A) is the Fresnel reflection as a function of A-, the
cosine of the polar angle. The Ri's should be obtained by
numerical integration. For a medium with an index of
refraction of 1.4, which is surrounded by air, we find that
A = 2.948 and Fi = 7.838 Fin,.

With use of an integrating sphere, the total of the light
reflected by a sample, RT, can be measured (in watts per
square centimeter). Within diffusion theory this quantity
is a function of the fluence rate and the flux at surface
z = 0 and can be calculated from

RT = (1-Rl(0) - (1 R2)F(O) + Rl.Fin.. (5)
4 2

The last term in Eq. (5) describes the incident light di-
rectly reflected by the surface. With use of the boundary
condition at z = 0 [Eq. (lc)], Eq. (5) can be simplified to

RT = 0) + (-1 + 2Rl + R2) F (6)

For a medium with an index of refraction of 1.4 in air we
obtain RT = (0)/5.895 - 0.330Finc.

The solution of the diffusion equations, Eqs. (1), in a de-
terministic medium is straightforward. In what follows,
deterministic parameters and quantities are given the
subscript 0. The fluence rate and flux in a nonstochastic
medium are given by

'Po(Z)=k + 2LaA exp(-koz),

Fo ( = Aao Fi exp(-koz),
ko + 2LaoA

A(Z) /Lo + p-,(z),

AO = const.,

(IL(z)) = 0,

(A 1 (z)u l(W)) ao 2 exp(-alz - wi),

(9a)

(9b)

(9c)

(9d)

where (f(pk)) signifies the expected value (average value) of
f i.e., f(,) multiplied by the probability function of A- and
integrated over all possible values of Au. Factor acr2 in the
correlation function determines the magnitude of the sto-
chastic variations. For example, the absorption coeffi-
cient can be considered a stochastic variable. Then - =
-a, a(Z) = i-LaO + Lia(Z) and a' = ora, while the scattering
parameters are constant: Ap(z) = i-so and g(z) = go.

Parameter a in Eq. (9d) determines how strongly the
Al distributions at different depths correlate. In Fig. 2
some examples of Al distributions are shown for different
values of a.12 If a is small, the Al sample at one depth is
close to the i-il samples at depths nearby. If a equals 0,
the IL samples are all the same and the medium is homo-
geneous with one (unknown) , value everywhere. For
larger values of a, the distributions at different depths are
less correlated. Distributions of i,,(z) that are totally un-
correlated are called white noise in signal processing. 0"1

For white noise, one can obtain in two ways the results
that follow: either by considering the limit for a -> 

after using Eq. (9d) or by using a 8-Dirac function in-
stead: (p_,(z)A,(w)) _o 2 8(z - w). Because most real-
istic media are not strongly correlated, the a values
considered in this paper are limited to the larger values.

a = 0 a = 5 ko a = 10ko a o

z = 

(7a)

(7b)

where

ko= (3iLaOi-trO)12. (8)

Stochastic Medium
We now consider a medium with stochastic optical parame-
ters. In such a medium the fluence rate is also a sample
from a distribution and has an expected value and a stan-
dard deviation.

Z 1Zko

Fig. 2. Examples of media with stochastic optical parameters
with different correlation functions. A dark pattern means a
high Al value. The probability distributions for j.l(z) are the
same at each depth, but, going from right to left, they are increas-
ingly correlated among themselves. For the smaller a values a
i-I, sample has a high probability of being close to the I- I samples
near it. For a = 0, one I,i value is sampled and all other Al val-
ues are the same. Most biological tissues can be considered un-
correlated: a -; i.e., Al(z) is white noise.
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Table 1. Quantities in Eqs. (10) and (15) for the
Different Stochastic Parameters lua

P. Pb X

ya O ~~~-1
Aao

As - 3 ( 1 -go) 0 0
Afro AO

g 3As/o 0 A.L° Og
trO 1 go

As -3 0

aParameter x is a relative standard deviation of each stochastic parame-
ter and (in highly scattering media) roughly equals a [Eqs. (9)] divided by
the average value of the parameter uL0.

Light Fluence Rate as a Stochastic Process
After assumption of Eqs. (9), the varied optical parame-
ter / equals ua , g, or ~u'. When Eq. (9a) for a particu-
lar ,u is substituted into Eqs. (1), then the following system
is obtained:

da-(z) + 3toF(z) = PaAtl(z)F(z), (lOa)
d

d F(Z) + .a0V4(Z) = Pb/l(z), (lb)
dz

P(0) + 2AF(0) = ft (lOc)

lim '(z) = 0. (1Od)
Z He

Again the parameters with subeript 0 are the determinis-
tic average values. Parameters P and Pb, which are de-
fined in Table 1, differentiate system (10) into distinct
systems for each parameter A. When a is one of the scat-
tering parameters A,, g, or ,,', then Pb equals zero. When
A is the absorption coefficient , we approximate Pa
by zero [since in a highly scattering medium pAla(z) <
LaO i<<.tr0]- So either Pb = O or Pa = O. A further study
of Eqs. (lOa) and (lOb) then yields that the results when k
is a scattering parameter equal the results when is the
absorption coefficient after (z) has been interchanged
with F(z) and 3

Intro with ao.

System (10) cannot be averaged immediately, because
the first statistical moments (1(z)F(z)) and (l(z)T(z))
are not known yet. To evaluate these terms, we calculate
the formal solutions of Eqs. (Oa) and (lOb) while treating
the right-hand sides as the inhomogeneous parts. The
formal solutions contain integrals over the same combina-
tions of ,tl(z) and either F(z) or (z). Then the formal
solutions for P(z) and F(z) are substituted into their own
integral terms. Thus all that remain are higher-order
combinations of /%,(z) and (z) or F(z) that can be aver-
aged with use of a closure assumption. 3"4

In the following equations, the only cases considered are
those in which is one of the scattering parameters, thus
when Pb = 0. As stated above, when ,u is the absorption
coefficient the equations can be simply obtained from the
ones shown. When one of the scattering parameters is
varied, the formal solutions of Eqs. (Oa) and (lOb) are

P(z) = cosh(koz)I(0) - 3tO sinh(koz)F(O)
ko

+ Pa j cosh[k(z - s)]F(s)A1(s)ds,

F(z) = - °o sinh(koz)T(O) + cosh(koz)F(O)

- -P J sinh[ko(z - s)]F(s)p1(s)ds.
3/h trO O

(la)

(lib)

These expressions cannot yet be averaged, because
(l(s)F(s)), the most important statistical quantity, is not
known. We therefore substitute Eq. (11b) itself into the
integrands of Eqs. (la) and (1b). For Eq. (la) this re-
sults in

T(z) = cosh(koz)P(0) - 3Ato sinh(koz)F(O)

-Pa cosh[ko(z - s)

X [ko° sinh(kos)T(O) - cosh(kos)F(O)] lz(s)ds

pa2f f cosh[ko(z - s)]sinh[ko(s - )]3lUtrO O $

(12)

and a similar expression for F(z). Equation (12) could be
expanded further in the same way. At this point, how-
ever, we take its average value and use a closure assump-
tion to discard higher-order correlation functions. The
closure assumption used is Bourret's assumption of local
independence 3 4:

(13)

where

X(z) = T(z) or (z) = F(z).

It is thus assumed that the gi's correlate much more
strongly among themselves than with (z) or with F(z);
cross correlations can be disregarded. According to
Frisch,9 Bourret's assumption is justified if [Eqs. (9)] is
small, while a/ko [Eqs. (8) and (9)] is large. So the varia-
tions in the optical parameters have to be small, and the
medium has to be little correlated.'5

To tackle the first integral term in Eq. (12), one needs
another closure assumption. Only for correlations be-
tween /,i(z) and the fluence rate or the flux at z = 0 we
use a lower-order Bourret approximation:

(,u (Z)X(0)) (,(z)J(x(O)) = 0, (14)

where

X(O) = T(O) or X(O) = F(O).

A physical justification for this approximation is that most
of the light at z = 0 comes directly from the (constant)
source or after traversing only a short distance through
the medium. So at z = 0 the correlation of the light with
the medium is small.'7
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Average Value of the Light Fluence Rate
In Table 1 we introduce parameter x as a relative standard
deviation of the stochastic parameter tL. For example, if

= ,, and x = 30% then the standard deviation of AS, o,
is almost 30% of the value of jus itself. The relative stan-
dard deviation x is scaled with factors that are close to 1,
because in the problems considered, /%lo << 'so , so
ItrO = /.laO + /is.O lso. Note that rg is taken relative to
(1 - go) rather than to go itself.

If we take the expected value of Eq. (12) and use
Bourret's assumptions, Eqs. (13) and (14) yield an integral
equation for ("I(z)):

(T(z)) = cosh(koz)(KI(0)) - to sinh(koz)(F(O))
ko

- 31.trokoax 2 | J cosh[ko(z - s)]
o fo

x sinh[ko(s - t)]exp[-a(s - t)](F(t))dtds. (15)

The expression for (F(z)) is similar. As a next step, we
reverse the order of integration in Eq. (15) and analyti-
cally integrate over s. After a Laplace transformation
we obtain

s(PO)- 3/.Lro(F(0))
L{(P(z))} = S~2 )-3Yr(()

3/jtroko 2 ax2 s

(S2 - k 0
2)[(S + a)2 - ko2 ]

{J(F~z))J tao(P(O)) + s(F())
Z ~~2 -k 

koa+ x 2

+(2-k0
2)[(S + a)2 - k {F)} (16)

This system is solved and so, when = ,,, ji = g, or
g = 1u,', the Laplace transforms of the average fluence
rate and the average flux are given by

tion of the fractions in Eqs. (17a), the inverse Laplace
transform can be applied. The resulting average fluence
rate is

4

(PF(z)) = E U1(Sd e) si
,=1 (d/ds)U2(sd)ep~j)

(19)

The values of the roots si show the necessity of the condi-
tions for the Bourret approximation [relation (13)]. If the
relative standard deviation x is too large, two roots are
complex numbers giving an oscillating ((z)), which is
physically unacceptable. If correlation parameter a is
too small, two roots are positive numbers, so that (T(z))
cannot vanish at z -> o.

The two unknowns remaining, ((0)) and (F(O)), are
found from the two boundary conditions for ('I) and (F):

(P(0)) + 2A(F(O)) = Fi,

lim (I(x)) = 0.

(20a)

(20b)

The conditions in Eqs. (20) are just the average values of
the boundary conditions for 'V and F [Eqs. (c) and
(10d)].'8 For a values that are large enough and x values
that are small enough, the roots s1 , S2, S3 , and S4 of U2(s)
are real, while three are negative and one, say, 34, is posi-
tive. The value of S4 is approximately +ko. For compli-
ance with the boundary condition for z -> X [Eq. (20b)],
the coefficient in Eq. (19) for S4 is made to vanish, giving a
second relation between ('I(0)) and (F(O)); U1(84) = 0.
The second-largest root is now the most important one in
Eq. (19). Its value is approximately -ko. Note that the
exponent of the fluence rate in a deterministic medium
[Eqs. (7)] is exactly -ko.

If the Al(z) distributions at different depths are not
correlated, i.e., Al(z) is white noise, one can find L{(T(z))}
and L{(F(z))} either by using a 8-Dirac function instead of
Eqs. (9) as a correlation function or, equivalently, by tak-
ing in Eqs. (17) the limit for a -m -. Then the expected

[(s + a)
2

- k 0
2]SQ'(0)) -

3
/.ro[(s + a)

2
- k 0

2 +ko 2 aX2 ](F(O))
LJ(T~z)) =(S2 -

2 ) [( + )2 
2 ] - k 4 2

I(17a)

[(s + a)2 - k 0
2] /.Lao(P(0)) + s(F(O))]

L{(F(z))} = (S2 - ko2)[(s + a)2 - k 2] - k 4ax2 (17b)

By first averaging and then Laplace transforming
Eq. (lOb), we find a relation between L{('I(z))} and
L{(F(z))}:

L{(P(z)) = - (sL(F(z))} -(F(O))),
AaO

(18)

which relation is implicit in Eqs. (17). When = A is
considered the statistical parameter, one can find L{(P(z))}
and L{(F(z))} from Eqs. (17) and (18) by changing T(z) into
F(z) and /L'aO into 3/.trO and vice versa.

Functions (T(z)) and (F(z)) themselves are found by in-
verse Laplace transforming Eqs. (17) and then applying
the boundary conditions for (T(z)) and (F(z)). The nu-
merator of the expression for L{(P(z))} in Eq. (17a) is de-
noted U1(s), and the denominator is U2(s). First, using the
computer algebra program MATHEMATICA, we obtain the
roots of U2(s), denoted si, S2, S3, and S 4 . After decomposi-

value of the fluence rate does not depend on parameter x.
When /, = ,uk, ,u = g, or ,u = I.' we have

LJ(<Ttz) f=} s("I(0)) - 3tro(F(0))

L{(F(z))} - ,o(P(0)) + s(F(O))
82 -k 2

(21a)

(21b)

Solving Eqs. (21) yields (,1(z)) = To(z), defined in Eq. (7a),

and (F(z)) = Fo(z), defined in Eq. (7b). So when the
medium is totally uncorrelated, the average values of the
stochastic fluence rate and of the flux equal the fluence
rate and the flux in a constant deterministic medium.

Standard Deviation of the Light Fluence Rate
The standard deviation of the fluence rate and of the flux
are defined by

u{p(z)} = [(p2(z)) - (t(z))2]1/2,

c{F(z)} = [(F2(Z)) - (F(z))2 /2. (22)

- -
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The method used to calculate ('I' 2 (z)) and (F2 (z)) is similar
to the one used above to obtain ((z)) and (F(z)). This
time we start from a system of three differential equations
for T

2
(Z), (z)F(z), and F2 (z). Equations (Oa) and (lOb)

are multiplied either by T(z) or by F(z), and the resulting
system is given by

d - 2
(Z) + 6trOT(z)F(z) = 2P/A.l(z)P(z)F(z), (23a)

dz

d
dz(z)F(z) + &0Op2(Z) + 3to F2 (Z)

= Il(Z)[PbT2 (Z) + PaF 2 (Z)],

(23b)

d-F2(z) + 2 04(z)F(z) = 2Pbut(z)T(z)F(z). (23c)
dz

This system is first solved formally while the right-hand-
side terms are treated as sources, just as was done with
the first statistical moments in Eqs. (11). Then the three
formal solutions are substituted once into the integral
terms, as for Eq. (12). The equations are averaged, and
Bourret's assumptions are used [relations (13) and (14) for
those higher-order moments]. The results now resemble
Eq. (15). The order of integration is reversed in the
double-integral terms, and one of the integrations is
performed analytically. The system of three integral
equations in (T

2
(z)), ('P(z)F(z)), and (F2 (z)) is Laplace

transformed [as for Eqs. (16)], and then solved for
L{(, 2(z))}, L{(P(z)F(z))}, and L{(F2 (z))}. When tt = .,, g,
or I.,,', we obtain
L{(t2(Z))J 

f,(s)(I'2 (0)) + f2(s)(I(0)F(O) + f3 (s)(F2 (0))
[(s + a)2 - 4 0

2](S2 - 4ko2)(s + a)s - 4ak94x 2(2s + a)2

L{(F 2(Z))} 

f4 (s)(i'2 (0)) + fs(s)(P(0)F(0)) + f6(s)(F2 (0))
[s + a)2 - 4k2](s2 - 4k02)(s + a)s - 4ak04x2(2s + a)2

L{(P(z)F(z))} - [L{(F2(z))} -(F2(0)),

where
f,(s) = [(s + a)2 - 4k0

2 ](s + a)(s2 - 2k0
2)

- 4ak0
4x2(2s + a),

f2(S) = 6/1trO{[(S + a) 2 - 4ko2](s + a)s

+ 2ak0
2x 2(2s + a)(s + a)},

f3(s) 818kuo2{[(s + a) 2 - 4k0
2](s + a)

+ ax2(s2 + as + 4ko2)(S + a)},

f 4(s) = 2pua2[(S + a)2 -4k 0
2](s + a),

Ms(5) =-2/,ao[(s + a)2 -4k 0
2 ](s + a)s,

f6(s) = [(S + a)2 - 4k0
2](s + a)(s2 - 2k02)

- 4ak0
4x2(2s + a).

(24a)

If = a, the same equations as for Eqs. (24) apply, only
the VIts and F's have to be interchanged, and simulta-
neously the factors Aao and 3ptrO have to be interchanged.
Inverse Laplace transformation of Eqs. (24) gives (T2 (Z))
(P(z)F(z)), and (F2(z)). To that end the six roots (labeled
s1, j = 1... 6) of the denominators of Eq. (24a) are deter-
mined again numerically. For sufficiently large values of
a and for sufficiently small values of x, all roots are real
valued. One root is positive (say, S6), one is nearly zero
but negative (say, s), one is approximately -2ko, and the
other three roots are smaller.'9

Three parameters are still unknown: (P2(0)),
(I(0)F(0)), and (F2(0)). They are used for compliance
with the boundary conditions and with some physical
conditions. First, a condition must be imposed on the
solution: I(z) vanishes for z -a - [Eq. (d)]; thus I 2 (z)
vanishes also for z -a> , and consequently

lim(T 2(z)) = 0.
z->0

(25)

Second, Var{T(z)} and Var{F(z)} [the squares of the stan-
dard deviations of Eqs. (22)] have to be nonnegative. So
extra conditions for ( 2(z)) and (F2(z)) are

(,y2(Z)) ((Z))2,

(F2 (z)) ! (F(Z))2 for all z. (26)

At z = 0, the exact boundary condition for (P2(Z))
(QI(z)F(z)), and (F2 (z)) equals boundary condition (10c)
squared and then averaged.20 However, the solutions can-
not comply with the exact boundary condition at z = 0,
with the boundary condition for z > - [condition (25)]
and with conditions (26) at the same time. We presume
that this situation is caused by our having discarded
the higher-order correlations between the light and the
medium [expressions (13) and (14)]. Instead, ( 2 (0)),
('I(O)F(O)), and (F2 (0)) are chosen such that the solutions
comply with conditions (25) and (26) and such that at
the same time, the exact boundary condition at z = 0 is
approximated as nearly as possible:

Min{Q(I2(0)) ) + 4A2(F2 (0)) - F21

given conditions (25) and (26)}. (27)

Condition (25) requires that the coefficient of the term
with the positive root s6 vanish. Condition (26) requires
the same for the term with the nearly zero root 55.21 The
third degree of freedom is then used to minimize the dif-
ference with boundary condition (27).

If the medium is not correlated, the second statistical
moments can be calculated again by taking system (24) in
the limit for a - . Contrary to ((z)) and (F(z)) for
a -a , the second statistical moments do depend on pa-
rameter x. The Laplace transformed moments are for

(24b) p = .ls, g, or pus':

L{(,r2(Z))} (s2 - 2ko2 )(T2 (0)) - 6trO(s + 2ko2x2)('P(0)F(0)) + 18,rO 2 (l + x 2s)(F 2(0))
a (S2 - 4k0

2)S - 4k 0
4X2

L{(V(z)F(z))} =
a-.n

-ptos(I2(0)) + s2 (P(0)F(O)) - 3/tro(s + 2 2x)(F2 (0))
(S2 - 4ko2 )s - 4ko4x2

L{(F2(Z)) 2o(P 2(0)) - 2aos(T(0)F(0)) + (S2 - 2)(F2()))
L{a} (2 - 4k 2)s - 4k 4x2
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<T(Z)> and <F(z)>

10

0.1
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[ W/cm 2 ]

0 0.1 0.2 0.3 0.4 0.5 z [ n ]

g = gs, g, r gs5|: gu=Aa:

M ..... <vP(z)> a- <vP(z)>
A..... < F(z) > - < F(z) >

Fig. 3. Expected values of the light fluence rate and of the light
flux in a medium with a stochastic optical parameter AUo = 1/cm,
pso = 100/cm, go = 0.9, Pktro = 11/cm, and n = 1.4. The medium
is rather correlated: a = 5ko 29/cm. Parameter x equals
30%1o, so the standard deviation of the stochastic optical parameter
pu is roughly 30% of Ao. The average fluence rates (T(z)) and the
average fluxes (F(z)) differ only slightly from the deterministic
fluence rate 'POI(z) and the deterministic flux Fo(z). Determinis-
tic calculations with the average optical parameters can be con-
sidered unbiased.

Only when a -a o, is boundary condition (27) minimized
by taking (T2 (0)) = (P(o))2 (if AL = gu g, or y±'), or
(F2(0)) = (F(0))2 (if p. = Qua). The other two parameters
at z = 0 are used to remove the two terms resulting from
roots s5 and S6.

RESULTS

The characteristics of a stochastic light distribution are
shown in a sample background medium with different
variations in the optical parameters. The absorption co-
efficient is considered to be stochastic, pL = t.; or the
scattering coefficient, A. = As; or the mean cosine of the
scattering angle, p. = g; or the reduced scattering coeffi-
cient, = A.,'. The amplitude of the variations, deter-
mined by parameter x, is varied in Figs. 4 and 5. Then
the effect is shown on the standard deviation of the flu-
ence rate when the correlation parameter a is varied. In
Fig. 7 the main result of this paper is demonstrated: the
relative standard deviation of the fluence rate increases
deeper in the medium.

The sample medium is a typical biological tissue during
a medical laser treatment. The average optical parame-
ters are -ao = 1/cm, .,,sO = 100/cm, go = 0.9, As.o = 10/cm,
and n = 1.4. The medium is highly scattering, so dif-
fusion theory is appropriate. The total incident flux is
Fi. = 1 W/cm 2 .

The relative standard deviation of the stochastic optical
parameter x is either 10% or 30%. When x = 30%, the
standard deviation of the parameter is approximately
30% of the average value of the parameter: a = 0.3/cm,
a-, = 33/cm, a-g = 0.033, or a-,' = 3.3/cm, when p. is tka,

pS,, g, or A.', respectively. For the same value of x, the
stochastic fluence rates and fluxes for the cases p. = .,,
A = g, and A. = L,,' are identical. Only if Au = p.a is

the stochastic fluence rate slightly different from the
three others.

Figure 3 shows the expected values of the stochastic flu-
ence rates and of the fluxes. The medium is correlated,
a = 5ko, and x = 30%. The average values decrease
somewhat faster than exp(-koz). They are almost the
same as the fluence rate and the flux in a deterministic
medium, O(z) and Fo(z) [Eqs. (7)]. The stochastic aver-
ages and the deterministic values are even closer for a
lower value of x or in a less-correlated medium. When
the variation of the optical parameter is white noise, i.e.,
when a -a o, they are identical [Eqs. (21)].

The standard deviation of the fluence rate in the same
sample medium is shown in Fig. 4. When x = 30%, the
standard deviation is substantial compared with the aver-
age fluence rate, which in the figure is represented by
Po(x). For g = I,, /x = g, or /,v = s.', the standard de-
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0 0.1 0.2 0.3 0.4 0.5 z [an]

= 9S, g, or ps': .L = WLa:

..... ..... = 10% * x = 10%

..... M..... x = 30% - - x = 30%
Fig. 4. Standard deviation of the light fluence rate. The distri-
butions of the stochastic parameters of the medium are corre-
lated: a = 5ko. Especially for higher x values, the standard
deviation of the fluence rate is considerable compared with its
average value, which is represented here by 'Io(z).
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Fig. 5. Standard deviation of the light flux. The same graph as
Fig. 4 but now for the light flux. The roles of the stochastic
scattering and absorption parameters are reversed.
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Fig. 6. Standard deviation of the light fluence rate for media
with several correlation parameters a. The standard deviation
(x = 30%o) of the fluence rate for a correlated medium (a = 5ko)
does not differ too much from the one for a totally uncorrelated
medium (a o).
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Fig. 7. Ratio of the standard deviation of light fluence rate and
its average value. Here a - , but for higher correlations the
graphs are similar. Further into the medium, where the light has
traversed more stochastic medium, the light fluence rate becomes
relatively more noisy.

viation has an irregular minimum near the surface. This
minimum is caused by one's having to minimize the dif-
ference with the boundary condition [expression (27)] in-
stead of fulfilling the exact boundary condition. For the
same reason, the magnitude of the standard deviation
calculated here is only an indication of the real one.
Parameters ( 2 (0)), ((O)F(0)), and (F2 (0)), which directly
influence the magnitude of the standard deviation, are
chosen as nearly as possible, but they are not the exact val-
ues. More important however is the change rate deeper
in the tissue: the standard deviation of the fluence rate
decreases nearly as exp(-koz).

Figure 5 is the same graph as Fig. 4, except that in

Fig. 5 the standard deviation of the flux is shown. Quali-
tatively, the behavior of o{F(z)} for = t, = g, or
A. = I.,' is the same as the behavior of o{T(z)} for p. = a
and vice versa.

In Fig. 6 the stochastic optical parameters have the
same relative standard deviation (x = 30%), but the cor-
relation a is varied. In a rather correlated medium
(a = 5ko), the standard deviation of the fluence rate does
not differ greatly from the standard deviation in a totally
uncorrelated medium (a -> m). Both the average value of
the fluence rate and the standard deviation vanish for
z -. The exponential decrease of o{P(z)} is, however,
slower than the exponential decrease of (P(z)). As shown
in Fig. 7, the ratio o-{T(z)}/(T(z)) increases deeper in the
tissue2 2 : the fluence rate becomes more noisy further
from the light source.

DISCUSSION AND CONCLUSIONS

In this paper a method is derived for calculating the
expected value and the standard deviation of the light
fluence rate in a medium with stochastic optical parame-
ters. For the stochastic optical parameters, no probabil-
ity distribution in each point is assumed; only a current
postulation is made about the correlation between two
distributions at different points.

In calculating the statistical moments of the light flu-
ence rate and the light flux, we disregarded higher-order
correlations. This is a valid assumption if the variations
of the optical parameter are not too large and if the me-
dium is not too correlated, which is usually so for a biologi-
cal tissue. Still, the results of this paper are primarily
qualitative and give more an indication of the statistical
moments of the fluence rate than their exact values. It is
difficult to support the results with measurements. The
method could be independently verified, though, by per-
formance of perturbation calculations with the Monte
Carlo method. 23

The stochastic moments of the fluence rate do not de-
pend strongly on the correlation between the layers. Most
often, it will be sufficient to consider only an uncorrelated
medium, i.e., a medium with white noise in one of the op-
tical parameters.

In other stochastic processes, the expected value of the
process can be significantly different from the value cal-
culated with the average values of the parameters (see, for
example, Ref. 2). In our problem, the fluence rate of light
in a highly scattering medium, the differences are small.
Calculations with the average values of the optical parame-
ters can be considered unbiased.

When the standard deviation of an optical parameter is
-30%o, the standard deviation of the fluence rate is consid-
erable: it is of the same order of magnitude as the aver-
age value of the fluence rate. The standard deviation
decreases further from the light source but more slowly
than the average fluence rate. Relative to the average
value, the standard deviation increases, with a rate de-
pending on parameter x. The fluence rate is more noisy
further from the source.

The geometry in this paper varies only in one dimen-
sion. In real, three-dimensional geometries, the optical
parameters vary also in the two lateral directions, and so
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the fluence rate varies also laterally. Since light is also
scattered into lateral directions, its standard deviation is
thus higher in a three-dimensional geometry. In mea-
surements, part of this extra variation will not be noticed,
though, because of the spatial resolution of the measuring
device, which makes a measured value an average value
over a certain surface area.

To measure the total reflection of a tissue medium, one
can use an integrating sphere. In those measurements,
the light radiance at the z = 0 surface is sampled. There-
fore the expected value of the stochastic total reflection is
almost the same as the deterministic total reflection.
The standard deviation of the total reflection is of the
same order of magnitude as the average total reflection
(if x = 301%). For a medium of finite thickness the total
transmission can be measured. The expected value of
the total transmission is also almost the deterministic
value, but the relative standard deviation is higher than
that of the total reflection. For thicker samples, the re-
flection measurements are less noisy than the transmis-
sion measurements.

In a medium with varying optical parameters, measure-
ments of the fluence rate, of the flux, or of the total ref lec-
tion or transmission are noisy, not only because of noise in
the measuring apparatus or because of the specimen-
to-specimen variation but also because of small-scale in-
homogeneities within one sample. The last cause is more
important further away from the light source. One can
estimate the average values with some accuracy by repeat-
ing the measurements at different spots of the sample.

Often a medium has to be irradiated, while each spot in
the medium should not get more than a certain absorbed
light dose or not less than a certain dose. In order to be
sure (with a certain chance) that the dose limit is not
overstepped, not only the deterministic fluence rates but
also the statistical confidence intervals for the fluence
rates have to be estimated.

In many applications the light dose is not so important
as the subsequent heat dose. The variations in heat dose
will be much less than the variations in light dose, because
heat diffusion spatially averages the light dose. However,
the heat dose is calculated from the light dose by means of
a nonlinear integral equation. Spikes in the light dose
give spikes in the initial heat distribution and could thus
show up as (smaller) spikes in the heat dose. Dose calcu-
lations should take into account that some spots can expe-
rience much less and others much more heat damage than
was estimated with the deterministic calculations.
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