The Effect of Moderate Speed on the Motion of Floating Bodies

A J. Hermans)and R. HM. Huijsmans?

1. INTRODUCTION

It is an honour for me to address the audience at this Festkolloquium in
honour of the retirement of Professor Dr. Klaus Eggers. I will discuss a
problem I am working on together with my co-author Huijsmans of MARIN. It
is often difficult to trace the point where oné gets the idea to tackle a
problem in a specific way. A discussion with Prof. Eggers on a different
topic, namely the treatment of the free surface condition in the low Froude
number wave resistance problem convinced me that a careful consideration of
the free surface condition in the ship motion problem could lead to a
proper theory just as well.

In this presentation I will show how in the case of a ship with moderate
forward speed the ship motion can be dealt with. In the case of a slender

ship this has been shown in [9].

In 1971 Remery and Hermans [19] reported results of the excitation and
motion of a barge moored to a single poiﬁt in wave groups. They considered
the surge motion only and showed that excitation of the large amplitude

low frequency motion was due to the low frequency drift force. At the time
they used in their simplified model a non realistic large damping coefficient
to predict the low frequency moticn response. In 1980 Pinkster [18] published
a method to compute the low frequency drift force. Pressure integration
techniques resulted in excellent agreement of the calculated drift forces

at zero forward speed with experiments. An unsolved problem, however, is

the estimation of the motion of a moored ship, especially when the mooring

is unstable. Wichers and Huijsmans [23] showed that the damping at the
natural frequencies of the mcoring system have to be considered carefully.
Results of model test experiments showed that a large part of the dampiné

at these natural frequencies could be generated by the velocity dependency
of the wave drift forces. Hence, the effect of moderate speed should be

accounted for if one wants to evaluate this wave damping phenomenon.

In the last decade many theories have been developed to compute ship motions.
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Major attention is directed towards thin and slender ships sailing at for-
ward speed in waves. An important development is the slender body approxi-
mation by Newman [13] and Newman and Tuck [14] for both zero and non-zero
forward speed. The unified strip theory introduced by Newman [16] produced
again better results in several cases and is extended by several authors.
Meanwhile, some powerful programs have been introduced to treat the zero
speed case for ship motions, without any geometrical simplifications. They
are based on the solution of integral equations, where the potential func-
tion is written as a source distribution or by means of Green's theorem.
An improved treatment of the pulsating source term is given by Newman [16]
and Noblesse [20].

At MARIN the original diffraction program of Van Oortmerssen [[17] is updated
with this new procedure. Model tests with several exceptional geometries
show that this program is very reliable. There is no program available

with the same performance in the case of forward speed. A direct approach

as reported by Bougis [2], Chang [4] and Inglis [11] is feasible, however,
it is time consuming. An other defect of that approach is the improper
treatment of the free surface. Without mentioning it a slenderness property
is assumed to neglect the effect of the disturbance of the stationary part
of the potential function. For these reasons we derive a consistent method
based on a perturbation with respect to the small value of the Froude

number.
2. MATHEMATICAL FORMULATION

The total potential function will be split in a steady and a nonsteady

part in a well~-known way:
d(x,t) = Ux + 3(x;0) + F(x,t;0) (1)

in this formulation U is the incoming unperturbed velocity field, obtained
by considering a coordinate system fixed to a ship moving under a drift
angle 0. In our approach this angle need not be small. The time dependent
part of the potential consists of an incoming wave at frequency W, a
diffracted and/or a radiated wave contribution. To compute the drift force

all these components will be taken into account. In this paper we restrict
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ourselves to a general theory concerning the wave components. Some results

of drift force computations are shown as well.

Fig. 1.
The equations for the total potential ¢ can be written as:

AP = 0 in the fluid domain De (2)
At the free surface we have the dynamic and kinematic boundary condition.

1
gt + @t + E—V@.V@ = const.
at z = C(x,y,t) (3)
o, - oL, -0L - =0

We assume that the waves are high compared with the Kelvin wave pattern and
that they both are small, hence the free surface condition can be expanded
at z = 0. Elimination of { leads to the following nonlinear condition:

2
70 | 582,28 (ve.98) +Ve.V (M) =0 atz=20 (4)

at? dz 9t 2

To compute the wave resistance at low speed the free surface must be treated
more carefully, because the wave height is of asymptotically smaller order.
This problem is studied extensively by Eggers [5], Baba [1], Hermans [8]

and Brandsma [3]. The velocity field is well described by the double body
potential with a small wave pattern. Therefore we take the double body

potential into account and we neglect the stationary wave pattern.
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For the wave potential 6(§,t;U) the free surface condition now becomes:

B * g%, * 20§, + 203.V§ . +

2 3 %2 I \E
+ (U” + 2U<1>X + ¢>X)asxx + 2(U + q>x)¢yasxy +
(5)

2 - -
* ¢Y$YY * (3U¢xx + Qxéxx * ¢y¢xy)$x M

= = = = = (2)

+ (200 + & O+t ) + L =0 at z =0
Xy X XY ¢Y®YY $Y )

The boundary condition on the hull can be written in a similar way for all

radiating and diffracted modes. We therefore treat the following general

form, keeping in mind that the actual form has to be used in the compu-

tations. Generally we have the condition:
(V&.E) = V(ﬁ)e—lwt at the mean position of the hull x ¢ S (6)

The nonlinear operator on § will be neglected as well. The first line in
(5) contains linear terms in U. Our Ansatz is that in order to obtain the
first order approximation with respect to U the second order terms with
respect to U may be neglected in the free surface. In the next section

we show that in general this is true, but first we discuss the construction
of the regular part of the perturbation problem, with the complete linear

free surface condition.

We assume 3 (x,t;U) to be oscillatory:

B0 = ol me ot (7

The free surface condition is written as:

2 ; 2 3
- -2 + U + = D(U; =0
w?é iwug b b, (u;d){¢} at = (8)
where D(U;®) is a linear differential operator acting on ¢ as defined in (5).
We apply Green's theorem to a problem in Di inside S and to the problem

in D, outside S where § is the ship's hull. The potential function inside S

obeys condition (8) with D = 0, while the Green's function fulfils the
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homogeneous adjoint free surface condition:

2 2
- WG + 2iwWUG, + U°G,.,.+ gG_.=0 at £ =0 (9)
£ gt ¢ E

This Green's function has the form:

Gle, £/0) = - L+ —i—l— - PGB (10)
where r = |§_- EJ and ry= |§_— éjl, where £' is the image of £ with respect
to the free surface.

Combining the formulation inside and outside the ship we may obtain a des-
cription of the potential function defined outside S by means of a source

and vortex distribution of the following form:

3 2iwy
- éfy(é) 5 cxBas, - [[o)ex,Das, - =/ y®expan

S WL
+ HE_I [y (&) §~'G(x £) - {a, v (&) + oy (&) }e(x,£) 1dn (11)
9 L = 3f T tht = iy = =2
u? iw
+— [ o o@®6cxBdn + = /! G(x,E)plolas, = 4mé(x)
9 L 9 Fs
a, = cos (0x,t), aT = cos(0x,T), an = cos (0x,n)

where n is the normal and t the tangent to the waterline and T = txn the
binormal.

It is clear that with the choice Y(E) = O the integral along the waterline
gives no contribution up to order U. The source distribution we obtain this
way is not a proper distribution, because it expresses the function ¢ in a
source distribution along the free surface with a strength proportional to
derivatives of the same function ¢. However, this formulation is linear in
U and moreover the integrand tends to zero rapidly for increasing distance

R. So finally we arrive at the formulation:

3G u? 3G
- 2mo(x) - [[o(E) S (x,E)ds, + — [ @ _o(§) z— (x,£)dn
— s an ==l g gL 7 an =

. (12)
s

= ff %E—--G(gf_ré_)D{qJ]dsE = 4mv(x), x € S

FS X

and
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2
amo(x) = - [[o(E)Gix,Eras, + Y[ aoB)Gx,E)an
s - 9 w7

iw (13)
+ 22 [ a(x,E)p{elas,  xeD
9 Fs

e

We now consider small values of U, keeping in mind that there are two

dimensionless parameters that play a role in the limit. We consider T = gg-<< i
L

and V = %7->> i. It turns out that the source strength and the potential

function can be expanded as follows:

0(x;U) = gg(x) + 10, (x) + F(x;0)
(14)

¢ (x;0)

g (x) + Thy (x) + $(x;U)

where O and § are O(T?) as T -+ 0, while the expansion of the Green's

function is less trivial.
3. THE GREEN'S FUNCTION

In this section we present an asymptotic expansion of the Green's function.
The Green's function follows from the source function presented in
Wehausen and Laitone [22].

In the case T<1/4 the function w(EJEJU) is written as follows:

9 /2 2q T
Yix,Ei0) = 25 [ ab [ax F,x) + 22 [ ab Jax F(8,%) (15)
0 Ly m/2 L,
where:
F(8,k) = kexp(klz +¢ + i(x—g)cosB])cos[k(y-n)sinG] (16)

gk - (W + KUcos8) 2

The contours L1 and L2 are given as follows:

K1y K2
. . A_J’f:\\ I — L
0 \/

K3 K4

- ° ° — - L
Fig. 2. 0 J ui 2
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These contours are chosen such that the 'radiation' conditions are
satisfied. The radiated waves are outgoing and the Kelvin pattern is behind
the ship. The values k are the poles of F(B,k). For small values of T these

poles behave as follows:
vgk,, vgkyvw+ o(T) as T+ 0 (17)

Vak,, ~/ak, "~ ;—w—— + 0(1) as T+ 0 (18)

2 cosf

A careful analysis of the asymptotic behaviour of Y(x,£;U) for small values

of U leads to a regular part and an irregular part:

Pix, 850 = Yy (x,8) + (B + .. F Ujo(i,g) + vt P, x,8) + ... (19)
where
" ek(z+?;)
Vo (xs8) = 29 f 3, (kR)dk (20)
L2 gk - w?
kzek(Z+C)
Y, (x,E) = dig®cosd’ J, (kR)dk (21)

o2y 2
Lz(gk w*)

where R?® = (x-£)% + (v -n)2and 8' = arctg (Z:H> and

x-§
m/2
ﬁo(zjg) = —4v f explV (z+7)sec?8]sin [V (x-E)sec 8]
*cos[v(y—n)sineseczsjseCZBdS (22)

Expression (22) gives the interaction of tHe translating part of the Green's
function with the oscillatory part. In the Appendix it is shown that due
to the highly oscillatory behaviour the influence of (22) may be neglected

in our first order correction for small values of T.
4. EXPANSION OF THE SOURCE STRENGTH
In this section an approximate solution of (12) will be derived. Inserting

(14) and (20) in (12) one obtains for like powers of T the following set

of equations:
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BG

- 270, ff 0, (&) an (x,£)d5; = 41Vp(x), x € § (23)
and
8Gy P
- 210, (x)-[[o, (B) m=— (x,E)dsp = - [fo,&) 5 ¥y (x,B)as, +
S X S X
(24)
Ul“ [f 3_0 x,£)V8.V4dsy + 4TV, (x)
FS X
where Go(flé) = - %»+ %»-— wo(zjg) is the zero speed pulsating wave source,

and V(x) = Vo(x) + TV, (x) + o(t?).

This perturbation approach leads to a fast algorithm that takes into account
speed effects once a fast method is available for the zero speed diffraction
problem. At MARIN the diffraction program has been extended with the Finngreen
subroutines of Newman. The diffraction program has been adjusted to compute

the right-hand side of (24) as well.
The potential functions (14) now become :
1
ox) = - 47 yoocg)coci.g_)dsg

and

]

1 1
b, (x) = — ,gfoo(_i_)wl(i,@dsg - éf 0, (B)Gy(x,E)dsy +
(25)
m ff Sy (x,F,)V<I> Voasg

In the Appendix it is shown that the non-uniform term in the Green's function
Jeads to contributions that are asymptotically small compared to the terms
we have taken into account.

5. FIRST AND SECOND ORDER FORCES

once the potentials ¢0(§) and ¢1(§) are known, the pressure is determined

from Bernoulli's equation:
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1
p(i,t;) = gz - p(bt - 5p\7<1* . Vo + Pq + C(t) (26)

The linearized pressure can be written as

p x,0) = pylx,0) + TRy () (27)
with
p.(x,t) = —p§—$ (x,t)
0~ ot 0=’
p, (x,t) = —pg—ai (x,t) - pfu 9«& (x,t) + V8(x).VP, (x,t)1/1 (28)
1= at 1= ox "0 =’ = trg !
Integration of the pressure over the mean wetted surface results in the
hydrodynamic reaction forces in the usual coordinate system fixed to the
ship ‘
F) = -f[p. n, ds (29)
S
Substitution of the pressure expansion (26, 27) gives:
(0) _
Fk = éf Pg - nkds
(30)
(L) _
Fk = ff p1 . nkds
S
with
F, = rl0 4 (D

For the unit motion in the j-mode one is now able to write the added mass

and damping coefficients:

2 (0) _ (0)
- w akj = real ij
(31)
e (0) (0)
- unbkj = imag ij

with similar definitions for aé;) and bé;).
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ij is the reaction force in the k-mode due to a unit oscillation in the

j—-mode.

The second order (with respect to wave height) mean drift forces can be

computed now. In the Bernoulli equation p and C(t) may be taken zero with-

i

out loss of generality. Assuming that a point on the hull is carrying out

. 1 s
a first order wave frequency motion g} ) about a mean position g}o)

and
applying a Taylor's expansion to the pressure in the mean position, the
following expression is found:

p(x,t) = p(o) +ept s Ezp(z) + 0(e?) (32)

(0)

where is a measure of the wave height, p the hydrostatic pressure and
p(l) the first order pressure, given in (27).
The second order pressure 1ls given by:

(2) (1)

2 1
p'? = - olv|2 - 05 - e L ) (33)

After some algebraic manipulations, the final expression for the mean drift

force becomes:

2@ g Lo man s o™ xexth 4 [f 3 olvnas ¢
WL - So
(34)
+ ffox™ L wponas
%0

This expression was derived by Pinkster [18]. wWe distinguish four contri-

butions to the total mean drift force.

I First order relative wave elevation
1 (1)
-5pg [ |z |Pnd1 (35)
) WL
II Pressure drop due to first order velocity
1
>0 [[lv8]?n as (36)
5o
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III pPressure due to products of first order pressure and first order

motion
p”(xm . V¢ )nas (37)
s, = t'= :
0
v Contribution due to products of first order angular motions and

inertia forces

a(l)

X (M.gél)) (38)
In exprsssion (34) the forward speed dependent potentials and derivatives
of these potentials have to be evaluated at the mean waterline and the
mean wetted surface.

The second order (with respect to the wave height) potential yields no
contribution to the mean drift forces. It will be clear that we cannot
make a perturbation series with respect to T. The first order motion 5(1)
depends on U in a complicated way, phase and amplitude are influenced by
the small parameter T. Therefore it is not possible to express (37) in a
power series in T uniformly. Similar arguments hold for some of the other
terms. So, finally, the effect of the speed on the drift forces is com-

puted by evaluating (34) numerically.
6. COMPUTATIONS OF LINEAR COEFFICIENTS

In order to evaluate the practicability of the porposed Green's function
(20) and {(21), calculations have been made on the one hand using an

adapted version of the Finngreen algorithm and on the other hand using
standard IMSL subroutines. We are able to transform the expression of W1

in (21) into an expression which contains derivatives of wO' Hence Finngreen
can be used, for most of the terms, see Huijsmans and Hermans fo1l.

The computer time needed for the calculation of the forward speed influence
was negligible compared with the zero speed computations. The total com-
puter time increases by approximately 5%, for the computation of the added

mass and damping coefficients.

At the moment very little data are available on the hydrodynamic reaction

coefficients of ship type vessels at low Froude numbers.
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In order to validate the present algorithm, computations have been

made with a series 60 ship (block .70) as was used by Vugts [2].

Also computations have been performed by the Ecole Nationale Supérieure
de Mécanique of Nantes [6] for the same ship and frequency range with a

program developed by Grekas et al. [7]. Their approach is quite different.

As an example we show the results of added mass and damping coefficients,

for the heave and pitch interaction.

1
A%}

Ns i
_____ 28 Ruroes
...... - Fn.0

A GREXAS
LY PRESENT STUDY

33 Faz00S

FR:0
PRESENT STLOY
GREKAS

i
\
|

12€8

10 €8

oetn

0SER

Q4cel

[} LX) L] L] 70

Fig. 3. Fig. 4.

In spite of the reasonable correlation one still feels the need of the

correlation with model test experiments.

7. COMPUTATIONS OF THE DRIFT FORCES

For the validation of the described numerical procedure to calculate the
mean wavedrift forces, a number of model test experiments are analysed.
The first order wave loads and added mass and damping coefficients were
computed for a head sea condition for a tanker moored in deep water in a

4 knot current. The calculated response functions for the heave and pitch
mode are presented in this figure. As shown the calculated heave and pitch

motion response compare favourably with results of model test experiments.
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Fig. 5. Response of a 200 kDWT tanker in deep water

The four components to the drift force are computed separately. The contri-
butions for the zero speed and 4 knot current speed are shown in the
figures 6 and 7. The total mean drift force for the zero speed and the 4
knot current case are depicted in fig. 8. From the mean wave drift at zero
speed and non-zero speed the so-called "wave damping" coefficient can be
derived as shown by Wichers and Huijsmans [22]. For the underlying case the

wave damping gives the following picture (fig. 9).

(2)

13,17
3

F

gV

L 0.5 o) )

Fig. 6. Contributions to the mean Fig. 7. Contributions to the mean
wave drift force (zero speed) wave drift force (4 knot)
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Fig. 8. Mean surge drift force in Fig. 9. "Wave damping" coefficient

head waves for 200 kDWT
tanker
In these examples the contribution of the free surface integrals are
negligible. This is due to the fact that in the case of zero drift angle
the double body.stationary potential may be neglected. In the future
computations will be carried out for ships moving at large drift angles.

We expect that the influence of those terms becomes of importance.
APPENDIX

In this appendix we study the influence of mo(zjg) on the source strength

and the potential. We rewrite the function mo as

/2
ﬂ)o(i,g_) = ImX (f_'.@ = — Im 2V f exp [vsec?B(z +[ + i) 1sec?0ds (A1)
-m/2
with § = (x - E)cosd - (y-n)sing and v = %1- )
First it will be shown that the integral
g
(A.2)

I(x,2) = [[o,(E) 5= (x,E)aS
S 0= anx £
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is asymptotically small. In the case we are dealing with a thin ship the
analysis can be carried out without a reconsideration of the stationary
potential. In the general case a uniformly valid stationary potential is
required to complete the proof. We wili indicate where this has to be done.
For the final analysis a similar approach as in the low Froude number wave
resistance problem is appropriate. In tﬁe forthcoming Ph.D. thesis of
Brandsma the wave resistance problem is solved for small values of the
Froude number. It is reasonable to assume in our case that a similar ana-
lysis can be carried out. The result will be that contributions to (A.2)
come from the end points of the ship. The results have similar, or smaller,
asymptotic behaviour as in the thin ship case. Hence, we continue with the

thin ship case.

For the thin ship the sourxce distribution (A.2) can be written as a distri-
bution along the projection 5 éf S on the (x,z) plane, moreover, the
approximation a/anx = 9/3y holds. We then obtain on S:

/2

%%-: 2v%i f sec'p sind exp[vsec?d (z + g + i(x~E)cosB))]dad (A.3)
-m/2

We therefore consider the integral

/2
10x,2) = 2v25 [ { [[o,(E, D exp [vsec®O(z+D) + ivsech (x-E) JaEdr}sec”9sinBdd
-n/2 8§

(a.4)
in the limitv= g/u? + =,
First, we consider the integral along %, Integration by parts results in
the major contribution because no stationary points are situated on S or
its boundary. We obtain:
. _m/2 . .
I7(x,z) = +2 f secesinSGO(E ,O)exp[v(zseczs + i(x-£ )secH)]ad +
-n/2
(n.5)

+ O(%ﬁ as v > ®

Here (gt,O) are the endpoints of the ship at the waterline.
The main contribution is generated by the endpoints. This is well known for
the wave resistance problem. Further asymptotic evaluation by means of

partial integration can be carried out because no stationary points show up.
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In the general case we find stationary points. However, they are generated
by the nonuniformity of the stationary potential. They must be disregarded.

In this case we find:
* 1
I7(x,z) = O(GEO as y + @ (A.6)

Actually, it can be proven that the contribution of &O to I(x,z) is

asymptotically zero.

To obtain insight in the influence of wo(i,g) on the potential function we

study the integral:

/2
J(x) = -2v [ {ffco(g,g)exp [vsec?B (z + [ + i((x-E)cosh ~ ysin®))Jlatgacl.
-1/2 S
. sec?6de (A.7)

The integral along S can be evaluated by means of partial integration. We

obtain:
+ 2 t T\'/2 +
stx) =220 (5,00 [ exp [v(zsec?d + ilx-§ )secd - iysec?fsinf)].
iv 70 —T/2
an
Seci0 (2.8)

: + . .
For arbitrary values of x a further asymptotic expansion of J (x) is possible

by means of the method of stationary phase. A Kelvin pattern is generated at

the bow and the stern. The main term behaves like:
+ 1 3
I (x) =0 |~—57| = 0(U%) (B.9)
3/2
V-
which means that a contribution at higher order than the linear term has been
obtained in the wave height. For the calculation of the pressure at the ship

a similar analysis shows that higher order terms are obtained as well. Hence,

we may neglect these terms if one is interested in linear correction terms.
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